Camina groups with few conjugacy classes

Let \(G\) be a finite group having a proper normal subgroup \(K\) such that the conjugacy classes outside \(K\) coincide with the cosets of \(K\). The subgroup \(K\) turns out to be the derived subgroup of \(G\), so the group \(G\) is either abelian or Camina. Hence, we propose to classify Camina gr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Cangelmi, Leonardo, Muktibodh, Arun S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/629
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-629
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6292018-04-04T09:11:25Z Camina groups with few conjugacy classes Cangelmi, Leonardo Muktibodh, Arun S. Camina groups; Frobenius groups; Conjugacy classes 20D25; 20E45 Let \(G\) be a finite group having a proper normal subgroup \(K\) such that the conjugacy classes outside \(K\) coincide with the cosets of \(K\). The subgroup \(K\) turns out to be the derived subgroup of \(G\), so the group \(G\) is either abelian or Camina. Hence, we propose to classify Camina groups according to the number of conjugacy classes contained in the derived subgroup. We give the complete characterization of Camina groups when the derived subgroup is made up of two or three conjugacy classes, showing that such groups are all Frobenius or extra-special. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/629 Algebra and Discrete Mathematics; Vol 9, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/629/163 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Camina groups; Frobenius groups; Conjugacy classes
20D25; 20E45
spellingShingle Camina groups; Frobenius groups; Conjugacy classes
20D25; 20E45
Cangelmi, Leonardo
Muktibodh, Arun S.
Camina groups with few conjugacy classes
topic_facet Camina groups; Frobenius groups; Conjugacy classes
20D25; 20E45
format Article
author Cangelmi, Leonardo
Muktibodh, Arun S.
author_facet Cangelmi, Leonardo
Muktibodh, Arun S.
author_sort Cangelmi, Leonardo
title Camina groups with few conjugacy classes
title_short Camina groups with few conjugacy classes
title_full Camina groups with few conjugacy classes
title_fullStr Camina groups with few conjugacy classes
title_full_unstemmed Camina groups with few conjugacy classes
title_sort camina groups with few conjugacy classes
description Let \(G\) be a finite group having a proper normal subgroup \(K\) such that the conjugacy classes outside \(K\) coincide with the cosets of \(K\). The subgroup \(K\) turns out to be the derived subgroup of \(G\), so the group \(G\) is either abelian or Camina. Hence, we propose to classify Camina groups according to the number of conjugacy classes contained in the derived subgroup. We give the complete characterization of Camina groups when the derived subgroup is made up of two or three conjugacy classes, showing that such groups are all Frobenius or extra-special.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/629
work_keys_str_mv AT cangelmileonardo caminagroupswithfewconjugacyclasses
AT muktibodharuns caminagroupswithfewconjugacyclasses
first_indexed 2024-04-12T06:25:19Z
last_indexed 2024-04-12T06:25:19Z
_version_ 1796109220781752320