Associated prime ideals of weak \(\sigma\)-rigid rings and their extensions

Let \(R\) be a right Noetherian ring which is also an algebra over \(\mathbb{Q}\) (\(\mathbb{Q}\) the  field of rational numbers). Let   \(\sigma\)  be  an automorphism  of   R  and  \(\delta\) a \(\sigma\)-derivation of \(R\). Let further \(\sigma\) be such that \(a\sigma(a)\in N(R)\) implies that...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Bhat, V. K.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/638
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(R\) be a right Noetherian ring which is also an algebra over \(\mathbb{Q}\) (\(\mathbb{Q}\) the  field of rational numbers). Let   \(\sigma\)  be  an automorphism  of   R  and  \(\delta\) a \(\sigma\)-derivation of \(R\). Let further \(\sigma\) be such that \(a\sigma(a)\in N(R)\) implies that \(a\in N(R)\) for \(a\in R\), where \(N(R)\) is the set of nilpotent elements of \(R\). In this paper we study the associated prime ideals of Ore extension \(R[x;\sigma,\delta]\) and we prove the following in this direction:Let \(R\) be a semiprime right Noetherian ring which is also an algebra over \(\mathbb{Q}\). Let \(\sigma\) and \(\delta\) be as above. Then \(P\) is an associated prime ideal of \(R[x;\sigma,\delta]\) (viewed as a right module over itself) if and only if there exists an associated prime ideal \(U\) of \(R\) with \(\sigma(U) = U\) and \(\delta(U)\subseteq U\) and \(P = U[x;\sigma,\delta]\).We also prove that if \(R\) be a right Noetherian ring which is also an algebra over \(\mathbb{Q}\), \(\sigma\) and \(\delta\) as usual such that \(\sigma(\delta(a))=\delta(\sigma(a))\) for all \(a\in R\) and \(\sigma(U) = U\) for all associated prime ideals \(U\) of \(R\) (viewed as a right module over itself), then \(P\) is an associated prime ideal of \(R[x;\sigma,\delta]\) (viewed as a right module over itself) if and only if there exists an associated prime ideal \(U\) of \(R\) such that \((P\cap R)[x;\sigma,\delta] = P\) and \(P\cap R = U\).