Preradical and kernel functors over categories of \(S\)−acts
We concider the big lattices of preradicals and kernel functors over some cathegories of centered \(S-\)acts, where \(S\) is monoid whit zero. We prove that those big lattices are two elements if and only if monoid \(S-\) is groups with zero. A subset of a Rees generated pretorsion theory is a subqu...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/641 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | We concider the big lattices of preradicals and kernel functors over some cathegories of centered \(S-\)acts, where \(S\) is monoid whit zero. We prove that those big lattices are two elements if and only if monoid \(S-\) is groups with zero. A subset of a Rees generated pretorsion theory is a subquantale of quantale of pretorsion theory. |
|---|