Preradical and kernel functors over categories of \(S\)−acts

We concider the big lattices of preradicals and kernel functors over some cathegories of centered \(S-\)acts, where \(S\) is monoid whit zero. We prove that those big lattices are two elements if and only if monoid \(S-\) is groups with zero. A subset of a Rees generated pretorsion theory is a subqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Komarnitskiy, Mykola, Oliynyk, Roman
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/641
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:We concider the big lattices of preradicals and kernel functors over some cathegories of centered \(S-\)acts, where \(S\) is monoid whit zero. We prove that those big lattices are two elements if and only if monoid \(S-\) is groups with zero. A subset of a Rees generated pretorsion theory is a subquantale of quantale of pretorsion theory.