Modules whose maximal submodules have \(\tau\)-supplements

Let \(R\) be a ring and \(\tau\) be a preradical for  the category of left \(R\)-modules. In this paper, we study on modules whose maximal submodules have \(\tau\)-supplements. We give some characterizations of these modules in terms their certain submodules, so called \(\tau\)-local submodules. For...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Buyukasık, Engin
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/646
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-646
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6462018-04-04T09:17:05Z Modules whose maximal submodules have \(\tau\)-supplements Buyukasık, Engin preradical, \(\tau\)-supplement, \(\tau\)-local 16D10, 16N80 Let \(R\) be a ring and \(\tau\) be a preradical for  the category of left \(R\)-modules. In this paper, we study on modules whose maximal submodules have \(\tau\)-supplements. We give some characterizations of these modules in terms their certain submodules, so called \(\tau\)-local submodules. For some certain preradicals \(\tau\), i.e.  \(\tau=\delta\) and idempotent \(\tau\),  we prove that every maximal submodule of \(M\) has a \(\tau\)-supplement if and only if every cofinite submodule of \(M\) has a \(\tau\)-supplement. For a radical \(\tau\) on \(\operatorname{R-Mod}\), we  prove that, for every \(R\)-module every submodule is a \(\tau\)-supplement if and only if \(R/\tau(R)\) is semisimple and \(\tau\) is hereditary. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/646 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/646/180 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:17:05Z
collection OJS
language English
topic preradical
\(\tau\)-supplement
\(\tau\)-local
16D10
16N80
spellingShingle preradical
\(\tau\)-supplement
\(\tau\)-local
16D10
16N80
Buyukasık, Engin
Modules whose maximal submodules have \(\tau\)-supplements
topic_facet preradical
\(\tau\)-supplement
\(\tau\)-local
16D10
16N80
format Article
author Buyukasık, Engin
author_facet Buyukasık, Engin
author_sort Buyukasık, Engin
title Modules whose maximal submodules have \(\tau\)-supplements
title_short Modules whose maximal submodules have \(\tau\)-supplements
title_full Modules whose maximal submodules have \(\tau\)-supplements
title_fullStr Modules whose maximal submodules have \(\tau\)-supplements
title_full_unstemmed Modules whose maximal submodules have \(\tau\)-supplements
title_sort modules whose maximal submodules have \(\tau\)-supplements
description Let \(R\) be a ring and \(\tau\) be a preradical for  the category of left \(R\)-modules. In this paper, we study on modules whose maximal submodules have \(\tau\)-supplements. We give some characterizations of these modules in terms their certain submodules, so called \(\tau\)-local submodules. For some certain preradicals \(\tau\), i.e.  \(\tau=\delta\) and idempotent \(\tau\),  we prove that every maximal submodule of \(M\) has a \(\tau\)-supplement if and only if every cofinite submodule of \(M\) has a \(\tau\)-supplement. For a radical \(\tau\) on \(\operatorname{R-Mod}\), we  prove that, for every \(R\)-module every submodule is a \(\tau\)-supplement if and only if \(R/\tau(R)\) is semisimple and \(\tau\) is hereditary.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/646
work_keys_str_mv AT buyukasıkengin moduleswhosemaximalsubmoduleshavetausupplements
first_indexed 2025-07-17T10:35:35Z
last_indexed 2025-07-17T10:35:35Z
_version_ 1837890048640417792