Generalized \(\oplus\)-supplemented modules
Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of gene...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of generalized \(\oplus\)-supplemented modules is generalized \(\oplus\)-supplemented. If \(M\) is a generalized \(\oplus\)-supplemented module with \((D3)\), then every direct summand of \(M\) is generalized \(\oplus\)-supplemented. We also give some properties of generalized cover. |
---|