Generalized \(\oplus\)-supplemented modules

Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented  if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of gene...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Calısıcı, Hamza, Turkmen, Ergul
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-647
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6472018-04-04T09:17:05Z Generalized \(\oplus\)-supplemented modules Calısıcı, Hamza Turkmen, Ergul generalized cover, generalized supplemented module, \(\oplus\)-supplemented module, generalized \(\oplus\)-supplemented module 16D10,16D99 Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented  if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of generalized \(\oplus\)-supplemented modules is generalized \(\oplus\)-supplemented. If \(M\) is a generalized \(\oplus\)-supplemented module with \((D3)\), then every direct summand of \(M\) is generalized \(\oplus\)-supplemented. We also give some properties of generalized cover. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647/181 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic generalized cover
generalized supplemented module
\(\oplus\)-supplemented module
generalized \(\oplus\)-supplemented module
16D10,16D99
spellingShingle generalized cover
generalized supplemented module
\(\oplus\)-supplemented module
generalized \(\oplus\)-supplemented module
16D10,16D99
Calısıcı, Hamza
Turkmen, Ergul
Generalized \(\oplus\)-supplemented modules
topic_facet generalized cover
generalized supplemented module
\(\oplus\)-supplemented module
generalized \(\oplus\)-supplemented module
16D10,16D99
format Article
author Calısıcı, Hamza
Turkmen, Ergul
author_facet Calısıcı, Hamza
Turkmen, Ergul
author_sort Calısıcı, Hamza
title Generalized \(\oplus\)-supplemented modules
title_short Generalized \(\oplus\)-supplemented modules
title_full Generalized \(\oplus\)-supplemented modules
title_fullStr Generalized \(\oplus\)-supplemented modules
title_full_unstemmed Generalized \(\oplus\)-supplemented modules
title_sort generalized \(\oplus\)-supplemented modules
description Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented  if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of generalized \(\oplus\)-supplemented modules is generalized \(\oplus\)-supplemented. If \(M\) is a generalized \(\oplus\)-supplemented module with \((D3)\), then every direct summand of \(M\) is generalized \(\oplus\)-supplemented. We also give some properties of generalized cover.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647
work_keys_str_mv AT calısıcıhamza generalizedoplussupplementedmodules
AT turkmenergul generalizedoplussupplementedmodules
first_indexed 2024-04-12T06:26:34Z
last_indexed 2024-04-12T06:26:34Z
_version_ 1796109220994613248