Generalized \(\oplus\)-supplemented modules
Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of gene...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-647 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-6472018-04-04T09:17:05Z Generalized \(\oplus\)-supplemented modules Calısıcı, Hamza Turkmen, Ergul generalized cover, generalized supplemented module, \(\oplus\)-supplemented module, generalized \(\oplus\)-supplemented module 16D10,16D99 Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of generalized \(\oplus\)-supplemented modules is generalized \(\oplus\)-supplemented. If \(M\) is a generalized \(\oplus\)-supplemented module with \((D3)\), then every direct summand of \(M\) is generalized \(\oplus\)-supplemented. We also give some properties of generalized cover. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647/181 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
generalized cover generalized supplemented module \(\oplus\)-supplemented module generalized \(\oplus\)-supplemented module 16D10,16D99 |
spellingShingle |
generalized cover generalized supplemented module \(\oplus\)-supplemented module generalized \(\oplus\)-supplemented module 16D10,16D99 Calısıcı, Hamza Turkmen, Ergul Generalized \(\oplus\)-supplemented modules |
topic_facet |
generalized cover generalized supplemented module \(\oplus\)-supplemented module generalized \(\oplus\)-supplemented module 16D10,16D99 |
format |
Article |
author |
Calısıcı, Hamza Turkmen, Ergul |
author_facet |
Calısıcı, Hamza Turkmen, Ergul |
author_sort |
Calısıcı, Hamza |
title |
Generalized \(\oplus\)-supplemented modules |
title_short |
Generalized \(\oplus\)-supplemented modules |
title_full |
Generalized \(\oplus\)-supplemented modules |
title_fullStr |
Generalized \(\oplus\)-supplemented modules |
title_full_unstemmed |
Generalized \(\oplus\)-supplemented modules |
title_sort |
generalized \(\oplus\)-supplemented modules |
description |
Let \(R\) be a ring and \(M\) be a left \(R\)-module. \(M\) is called generalized \(\oplus\)- supplemented if every submodule of \(M\) has a generalized supplement that is a direct summand of \(M\). In this paper we give various properties of such modules. We show that any finite direct sum of generalized \(\oplus\)-supplemented modules is generalized \(\oplus\)-supplemented. If \(M\) is a generalized \(\oplus\)-supplemented module with \((D3)\), then every direct summand of \(M\) is generalized \(\oplus\)-supplemented. We also give some properties of generalized cover. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/647 |
work_keys_str_mv |
AT calısıcıhamza generalizedoplussupplementedmodules AT turkmenergul generalizedoplussupplementedmodules |
first_indexed |
2024-04-12T06:26:34Z |
last_indexed |
2024-04-12T06:26:34Z |
_version_ |
1796109220994613248 |