A sequence of factorizable subgroups

Let \(G\) be a non-abelian non-simple group. In this article the group \(G\) such that \(G=MC_G(M)\) will be studied, where \(M\) is a proper maximal subgroup of \(G\) and \(C_G(M)\) is the centralizer of \(M\) in \(G\).

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Dabbaghian, Vahid
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/648
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-648
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6482018-04-04T09:17:05Z A sequence of factorizable subgroups Dabbaghian, Vahid central product, maximal subgroup, sequence of subgroups 20E28; 20F14 Let \(G\) be a non-abelian non-simple group. In this article the group \(G\) such that \(G=MC_G(M)\) will be studied, where \(M\) is a proper maximal subgroup of \(G\) and \(C_G(M)\) is the centralizer of \(M\) in \(G\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/648 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/648/182 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:17:05Z
collection OJS
language English
topic central product
maximal subgroup
sequence of subgroups
20E28
20F14
spellingShingle central product
maximal subgroup
sequence of subgroups
20E28
20F14
Dabbaghian, Vahid
A sequence of factorizable subgroups
topic_facet central product
maximal subgroup
sequence of subgroups
20E28
20F14
format Article
author Dabbaghian, Vahid
author_facet Dabbaghian, Vahid
author_sort Dabbaghian, Vahid
title A sequence of factorizable subgroups
title_short A sequence of factorizable subgroups
title_full A sequence of factorizable subgroups
title_fullStr A sequence of factorizable subgroups
title_full_unstemmed A sequence of factorizable subgroups
title_sort sequence of factorizable subgroups
description Let \(G\) be a non-abelian non-simple group. In this article the group \(G\) such that \(G=MC_G(M)\) will be studied, where \(M\) is a proper maximal subgroup of \(G\) and \(C_G(M)\) is the centralizer of \(M\) in \(G\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/648
work_keys_str_mv AT dabbaghianvahid asequenceoffactorizablesubgroups
AT dabbaghianvahid sequenceoffactorizablesubgroups
first_indexed 2025-07-17T10:32:46Z
last_indexed 2025-07-17T10:32:46Z
_version_ 1837889871401713664