Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums
In this paper, we construct two binary linear codes associated withmulti-dimensional and \(m\)-multiple power Kloosterman sums (for anyfixed \(m\)) over the finite field \(\mathbb{F}_{q}\). Here \(q\) is apower of two. The former codes are dual to a subcode of the binaryhyper-Kloosterman code. Then...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2015
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/65 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-65 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-652015-09-28T11:22:08Z Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums Kim, Dae San Index terms-recursive formula, multi-dimensional Kloosterman sum, 11T23, 20G40, 94B05 In this paper, we construct two binary linear codes associated withmulti-dimensional and \(m\)-multiple power Kloosterman sums (for anyfixed \(m\)) over the finite field \(\mathbb{F}_{q}\). Here \(q\) is apower of two. The former codes are dual to a subcode of the binaryhyper-Kloosterman code. Then we obtain two recursive formulas forthe power moments of multi-dimensional Kloosterman sums and for the\(m\)-multiple power moments of Kloosterman sums in terms of thefrequencies of weights in the respective codes. This is done viaPless power moment identity and yields, in the case of power momentsof multi-dimensional Kloosterman sums, much simpler recursiveformulas than those associated with finite special linear groupsobtained previously. Lugansk National Taras Shevchenko University This work was supported by National Research Foundation of Korea Grant funded by the Korean Government 2009-0072514. 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/65 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/65/15 Copyright (c) 2015 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Index terms-recursive formula multi-dimensional Kloosterman sum, 11T23 20G40 94B05 |
spellingShingle |
Index terms-recursive formula multi-dimensional Kloosterman sum, 11T23 20G40 94B05 Kim, Dae San Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums |
topic_facet |
Index terms-recursive formula multi-dimensional Kloosterman sum, 11T23 20G40 94B05 |
format |
Article |
author |
Kim, Dae San |
author_facet |
Kim, Dae San |
author_sort |
Kim, Dae San |
title |
Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums |
title_short |
Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums |
title_full |
Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums |
title_fullStr |
Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums |
title_full_unstemmed |
Recursive formulas generating power moments of multi-dimensional Kloosterman sums and \(m\)-multiple power moments of Kloosterman sums |
title_sort |
recursive formulas generating power moments of multi-dimensional kloosterman sums and \(m\)-multiple power moments of kloosterman sums |
description |
In this paper, we construct two binary linear codes associated withmulti-dimensional and \(m\)-multiple power Kloosterman sums (for anyfixed \(m\)) over the finite field \(\mathbb{F}_{q}\). Here \(q\) is apower of two. The former codes are dual to a subcode of the binaryhyper-Kloosterman code. Then we obtain two recursive formulas forthe power moments of multi-dimensional Kloosterman sums and for the\(m\)-multiple power moments of Kloosterman sums in terms of thefrequencies of weights in the respective codes. This is done viaPless power moment identity and yields, in the case of power momentsof multi-dimensional Kloosterman sums, much simpler recursiveformulas than those associated with finite special linear groupsobtained previously. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2015 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/65 |
work_keys_str_mv |
AT kimdaesan recursiveformulasgeneratingpowermomentsofmultidimensionalkloostermansumsandmmultiplepowermomentsofkloostermansums |
first_indexed |
2024-04-12T06:25:20Z |
last_indexed |
2024-04-12T06:25:20Z |
_version_ |
1796109221100519424 |