Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
Let \(G\) be a simple graph and let \(I_c(G)\) be its ideal of vertex covers. We give a graph theoretical description of the irreducible \(b\)-vertex covers of \(G\), i.e., we describe the minimal generators of the symbolic Rees algebra of \(I_c(G)\). Then we study the irreducible \(b\)-vertex cover...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/651 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | Let \(G\) be a simple graph and let \(I_c(G)\) be its ideal of vertex covers. We give a graph theoretical description of the irreducible \(b\)-vertex covers of \(G\), i.e., we describe the minimal generators of the symbolic Rees algebra of \(I_c(G)\). Then we study the irreducible \(b\)-vertex covers of the blocker of \(G\), i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of \(G\). We give a graph theoretical description of the irreducible binary \(b\)-vertex covers of the blocker of \(G\). It is shown that they correspond to irreducible induced subgraphs of \(G\). As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of \(G\). In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible \(b\)-vertex covers of the blocker of \(G\) with high degree relative to the number of vertices of \(G\). |
---|