Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
Let \(G\) be a simple graph and let \(I_c(G)\) be its ideal of vertex covers. We give a graph theoretical description of the irreducible \(b\)-vertex covers of \(G\), i.e., we describe the minimal generators of the symbolic Rees algebra of \(I_c(G)\). Then we study the irreducible \(b\)-vertex cover...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/651 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(G\) be a simple graph and let \(I_c(G)\) be its ideal of vertex covers. We give a graph theoretical description of the irreducible \(b\)-vertex covers of \(G\), i.e., we describe the minimal generators of the symbolic Rees algebra of \(I_c(G)\). Then we study the irreducible \(b\)-vertex covers of the blocker of \(G\), i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of \(G\). We give a graph theoretical description of the irreducible binary \(b\)-vertex covers of the blocker of \(G\). It is shown that they correspond to irreducible induced subgraphs of \(G\). As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of \(G\). In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible \(b\)-vertex covers of the blocker of \(G\) with high degree relative to the number of vertices of \(G\). |
---|