Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones

Let \(G\) be a simple graph and let \(I_c(G)\) be its ideal of vertex covers. We give a graph theoretical description of the irreducible \(b\)-vertex covers of \(G\), i.e., we describe the minimal generators of the symbolic Rees algebra of \(I_c(G)\). Then we study the irreducible \(b\)-vertex cover...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Dupont, Luis A., Villarreal, Rafael H.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/651
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-651
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6512018-04-04T09:17:05Z Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones Dupont, Luis A. Villarreal, Rafael H. edge ideal, symbolic Rees algebras, perfect graph, irreducible vertex covers, irreducible graph, Alexander dual, blocker, clutter 13F20, 05C75, 05C65, 52B20 Let \(G\) be a simple graph and let \(I_c(G)\) be its ideal of vertex covers. We give a graph theoretical description of the irreducible \(b\)-vertex covers of \(G\), i.e., we describe the minimal generators of the symbolic Rees algebra of \(I_c(G)\). Then we study the irreducible \(b\)-vertex covers of the blocker of \(G\), i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of \(G\). We give a graph theoretical description of the irreducible binary \(b\)-vertex covers of the blocker of \(G\). It is shown that they correspond to irreducible induced subgraphs of \(G\). As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of \(G\). In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible \(b\)-vertex covers of the blocker of \(G\) with high degree relative to the number of vertices of \(G\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/651 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/651/185 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic edge ideal
symbolic Rees algebras
perfect graph
irreducible vertex covers
irreducible graph
Alexander dual
blocker
clutter
13F20
05C75
05C65
52B20
spellingShingle edge ideal
symbolic Rees algebras
perfect graph
irreducible vertex covers
irreducible graph
Alexander dual
blocker
clutter
13F20
05C75
05C65
52B20
Dupont, Luis A.
Villarreal, Rafael H.
Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
topic_facet edge ideal
symbolic Rees algebras
perfect graph
irreducible vertex covers
irreducible graph
Alexander dual
blocker
clutter
13F20
05C75
05C65
52B20
format Article
author Dupont, Luis A.
Villarreal, Rafael H.
author_facet Dupont, Luis A.
Villarreal, Rafael H.
author_sort Dupont, Luis A.
title Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
title_short Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
title_full Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
title_fullStr Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
title_full_unstemmed Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
title_sort symbolic rees algebras, vertex covers and irreducible representations of rees cones
description Let \(G\) be a simple graph and let \(I_c(G)\) be its ideal of vertex covers. We give a graph theoretical description of the irreducible \(b\)-vertex covers of \(G\), i.e., we describe the minimal generators of the symbolic Rees algebra of \(I_c(G)\). Then we study the irreducible \(b\)-vertex covers of the blocker of \(G\), i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of \(G\). We give a graph theoretical description of the irreducible binary \(b\)-vertex covers of the blocker of \(G\). It is shown that they correspond to irreducible induced subgraphs of \(G\). As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of \(G\). In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible \(b\)-vertex covers of the blocker of \(G\) with high degree relative to the number of vertices of \(G\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/651
work_keys_str_mv AT dupontluisa symbolicreesalgebrasvertexcoversandirreduciblerepresentationsofreescones
AT villarrealrafaelh symbolicreesalgebrasvertexcoversandirreduciblerepresentationsofreescones
first_indexed 2024-04-12T06:26:34Z
last_indexed 2024-04-12T06:26:34Z
_version_ 1796109221206425600