2025-02-23T00:46:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-655%22&qt=morelikethis&rows=5
2025-02-23T00:46:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-655%22&qt=morelikethis&rows=5
2025-02-23T00:46:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:46:41-05:00 DEBUG: Deserialized SOLR response

On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices

In the universe of finite groups the description of \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices of \(\tau\)-closed \(n\)-multiply \(\omega\)-composition subformations is obtained.

Saved in:
Bibliographic Details
Main Author: Zhiznevsky, Pavel
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/655
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ojs.admjournal.luguniv.edu.ua:article-655
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6552018-04-04T09:17:05Z On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices Zhiznevsky, Pavel finite group, formation, \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formation, Boolean lattice, complemented lattice 20D10, 20F17 In the universe of finite groups the description of \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices of \(\tau\)-closed \(n\)-multiply \(\omega\)-composition subformations is obtained. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/655 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/655/189 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic finite group
formation
\(\tau\)-closed \(n\)-multiply \(\omega\)-composition formation
Boolean lattice
complemented lattice
20D10
20F17
spellingShingle finite group
formation
\(\tau\)-closed \(n\)-multiply \(\omega\)-composition formation
Boolean lattice
complemented lattice
20D10
20F17
Zhiznevsky, Pavel
On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices
topic_facet finite group
formation
\(\tau\)-closed \(n\)-multiply \(\omega\)-composition formation
Boolean lattice
complemented lattice
20D10
20F17
format Article
author Zhiznevsky, Pavel
author_facet Zhiznevsky, Pavel
author_sort Zhiznevsky, Pavel
title On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices
title_short On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices
title_full On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices
title_fullStr On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices
title_full_unstemmed On \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices
title_sort on \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with boolean sublattices
description In the universe of finite groups the description of \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations with Boolean sublattices of \(\tau\)-closed \(n\)-multiply \(\omega\)-composition subformations is obtained.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/655
work_keys_str_mv AT zhiznevskypavel ontauclosednmultiplyomegacompositionformationswithbooleansublattices
first_indexed 2024-04-12T06:26:14Z
last_indexed 2024-04-12T06:26:14Z
_version_ 1796109210357858304