Derivations and relation modules for inverse semigroups
We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentati...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/670 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentation module. The constructions are analogues of the first steps in the Gruenberg resolution obtained from a group presentation. We give a new proof of the characterization of inverse monoids of cohomological dimension zero, and find a class of examples of inverse semigroups of cohomological dimension one. |
---|