The influence of weakly \(s\)-permutably embedded subgroups on the \(p\)-nilpotency of finite groups
Suppose \(G\) is a finite group and \(H\) is a subgroup of \(G\). \(H\) is said to be \(s\)-permutably embedded in \(G\) if for each prime \(p\) dividing \(|H|\), a Sylow \(p\)-subgroup of \(H\) is also a Sylow \(p\)-subgroup of some \(s\)-permutable subgroup of \(G\); \(H\) is called weakly \(s\)-...
Saved in:
Date: | 2018 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/671 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSummary: | Suppose \(G\) is a finite group and \(H\) is a subgroup of \(G\). \(H\) is said to be \(s\)-permutably embedded in \(G\) if for each prime \(p\) dividing \(|H|\), a Sylow \(p\)-subgroup of \(H\) is also a Sylow \(p\)-subgroup of some \(s\)-permutable subgroup of \(G\); \(H\) is called weakly \(s\)-permutably embedded in \(G\) if there are a subnormal subgroup \(T\) of \(G\) and an \(s\)-permutably embedded subgroup \(H_{se}\) of \(G\) contained in \(H\) such that \(G=HT\) and \(H\cap T\leq H_{se}\). We investigate the influence of weakly \(s\)-permutably embedded subgroups on the \(p\)-nilpotency of finite groups. |
---|