Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)

For the affine Lie algebra \(\widehat{sl} (n,{\mathbb{C}})\) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These  representations generalize a construction of Imaginary Verma modules [F1]. The realization const...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Martins, Renato A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/672
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-672
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6722018-04-04T09:28:39Z Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\) Martins, Renato A. 17B67, 81R10 For the affine Lie algebra \(\widehat{sl} (n,{\mathbb{C}})\) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These  representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B.Cox [С1]. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/672 Algebra and Discrete Mathematics; Vol 12, No 1 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/672/206 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:28:39Z
collection OJS
language English
topic
17B67
81R10
spellingShingle
17B67
81R10
Martins, Renato A.
Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)
topic_facet
17B67
81R10
format Article
author Martins, Renato A.
author_facet Martins, Renato A.
author_sort Martins, Renato A.
title Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)
title_short Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)
title_full Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)
title_fullStr Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)
title_full_unstemmed Free field realizations of certain modules for affine Lie algebra \(\widehat{sl}(n,\mathbb{C})\)
title_sort free field realizations of certain modules for affine lie algebra \(\widehat{sl}(n,\mathbb{c})\)
description For the affine Lie algebra \(\widehat{sl} (n,{\mathbb{C}})\) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These  representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B.Cox [С1].
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/672
work_keys_str_mv AT martinsrenatoa freefieldrealizationsofcertainmodulesforaffineliealgebrawidehatslnmathbbc
first_indexed 2025-07-17T10:32:47Z
last_indexed 2025-07-17T10:32:47Z
_version_ 1837889872558292992