Graded limits of minimal affinizations and beyond: the multiplicity free case for type \(E_6\)

We obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type \(E_6\). For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the asso...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Moura, Adriano, Pereira, Fernanda
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/674
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type \(E_6\). For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.