2025-02-22T17:55:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-675%22&qt=morelikethis&rows=5
2025-02-22T17:55:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-675%22&qt=morelikethis&rows=5
2025-02-22T17:55:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:55:48-05:00 DEBUG: Deserialized SOLR response

\(H\)-supplemented modules with respect to a preradical

Let \(M\) be a right \(R\)-module and \(\tau\) a preradical. We call \(M\) \(\tau\)-\(H\)-supplemented if for every submodule \(A\) of \(M\) there exists a direct summand \(D\) of \(M\) such that \((A + D)/D \subseteq \tau(M/D)\) and \((A + D)/A \subseteq \tau(M/A)\). Let \(\tau\) be a cohereditary...

Full description

Saved in:
Bibliographic Details
Main Authors: Talebi, Yahya, Hamzekolaei, A. R. Moniri, Tutuncu, Derya Keskin
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ojs.admjournal.luguniv.edu.ua:article-675
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6752018-04-04T09:28:39Z \(H\)-supplemented modules with respect to a preradical Talebi, Yahya Hamzekolaei, A. R. Moniri Tutuncu, Derya Keskin \(H\)-supplemented module, \(\tau\)-\(H\)-supplemented module, \(\tau\)-lifting module 16S90, 16D10, 16D70, 16D99 Let \(M\) be a right \(R\)-module and \(\tau\) a preradical. We call \(M\) \(\tau\)-\(H\)-supplemented if for every submodule \(A\) of \(M\) there exists a direct summand \(D\) of \(M\) such that \((A + D)/D \subseteq \tau(M/D)\) and \((A + D)/A \subseteq \tau(M/A)\). Let \(\tau\) be a cohereditary preradical. Firstly, for a duo module \(M = M_{1} \oplus M_{2}\) we prove that \(M\) is \(\tau\)-\(H\)-supplemented if and only if \(M_{1}\) and \(M_{2}\) are \(\tau\)-\(H\)-supplemented. Secondly, let \(M=\oplus_{i=1}^nM_i\) be a \(\tau\)-supplemented module. Assume that \(M_i\) is \(\tau\)-\(M_j\)-projective for all \(j &gt; i\). If each \(M_i\) is \(\tau\)-\(H\)-supplemented, then \(M\) is \(\tau\)-\(H\)-supplemented. We also investigate the relations between \(\tau\)-\(H\)-supplemented modules and \(\tau\)-(\(\oplus\)-)supplemented modules. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675 Algebra and Discrete Mathematics; Vol 12, No 1 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675/209 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic \(H\)-supplemented module
\(\tau\)-\(H\)-supplemented module
\(\tau\)-lifting module
16S90
16D10
16D70
16D99
spellingShingle \(H\)-supplemented module
\(\tau\)-\(H\)-supplemented module
\(\tau\)-lifting module
16S90
16D10
16D70
16D99
Talebi, Yahya
Hamzekolaei, A. R. Moniri
Tutuncu, Derya Keskin
\(H\)-supplemented modules with respect to a preradical
topic_facet \(H\)-supplemented module
\(\tau\)-\(H\)-supplemented module
\(\tau\)-lifting module
16S90
16D10
16D70
16D99
format Article
author Talebi, Yahya
Hamzekolaei, A. R. Moniri
Tutuncu, Derya Keskin
author_facet Talebi, Yahya
Hamzekolaei, A. R. Moniri
Tutuncu, Derya Keskin
author_sort Talebi, Yahya
title \(H\)-supplemented modules with respect to a preradical
title_short \(H\)-supplemented modules with respect to a preradical
title_full \(H\)-supplemented modules with respect to a preradical
title_fullStr \(H\)-supplemented modules with respect to a preradical
title_full_unstemmed \(H\)-supplemented modules with respect to a preradical
title_sort \(h\)-supplemented modules with respect to a preradical
description Let \(M\) be a right \(R\)-module and \(\tau\) a preradical. We call \(M\) \(\tau\)-\(H\)-supplemented if for every submodule \(A\) of \(M\) there exists a direct summand \(D\) of \(M\) such that \((A + D)/D \subseteq \tau(M/D)\) and \((A + D)/A \subseteq \tau(M/A)\). Let \(\tau\) be a cohereditary preradical. Firstly, for a duo module \(M = M_{1} \oplus M_{2}\) we prove that \(M\) is \(\tau\)-\(H\)-supplemented if and only if \(M_{1}\) and \(M_{2}\) are \(\tau\)-\(H\)-supplemented. Secondly, let \(M=\oplus_{i=1}^nM_i\) be a \(\tau\)-supplemented module. Assume that \(M_i\) is \(\tau\)-\(M_j\)-projective for all \(j &gt; i\). If each \(M_i\) is \(\tau\)-\(H\)-supplemented, then \(M\) is \(\tau\)-\(H\)-supplemented. We also investigate the relations between \(\tau\)-\(H\)-supplemented modules and \(\tau\)-(\(\oplus\)-)supplemented modules.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675
work_keys_str_mv AT talebiyahya hsupplementedmoduleswithrespecttoapreradical
AT hamzekolaeiarmoniri hsupplementedmoduleswithrespecttoapreradical
AT tutuncuderyakeskin hsupplementedmoduleswithrespecttoapreradical
first_indexed 2024-04-12T06:25:21Z
last_indexed 2024-04-12T06:25:21Z
_version_ 1796109221527289856