2025-02-22T17:55:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-675%22&qt=morelikethis&rows=5
2025-02-22T17:55:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-675%22&qt=morelikethis&rows=5
2025-02-22T17:55:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:55:48-05:00 DEBUG: Deserialized SOLR response
\(H\)-supplemented modules with respect to a preradical
Let \(M\) be a right \(R\)-module and \(\tau\) a preradical. We call \(M\) \(\tau\)-\(H\)-supplemented if for every submodule \(A\) of \(M\) there exists a direct summand \(D\) of \(M\) such that \((A + D)/D \subseteq \tau(M/D)\) and \((A + D)/A \subseteq \tau(M/A)\). Let \(\tau\) be a cohereditary...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs.admjournal.luguniv.edu.ua:article-675 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-6752018-04-04T09:28:39Z \(H\)-supplemented modules with respect to a preradical Talebi, Yahya Hamzekolaei, A. R. Moniri Tutuncu, Derya Keskin \(H\)-supplemented module, \(\tau\)-\(H\)-supplemented module, \(\tau\)-lifting module 16S90, 16D10, 16D70, 16D99 Let \(M\) be a right \(R\)-module and \(\tau\) a preradical. We call \(M\) \(\tau\)-\(H\)-supplemented if for every submodule \(A\) of \(M\) there exists a direct summand \(D\) of \(M\) such that \((A + D)/D \subseteq \tau(M/D)\) and \((A + D)/A \subseteq \tau(M/A)\). Let \(\tau\) be a cohereditary preradical. Firstly, for a duo module \(M = M_{1} \oplus M_{2}\) we prove that \(M\) is \(\tau\)-\(H\)-supplemented if and only if \(M_{1}\) and \(M_{2}\) are \(\tau\)-\(H\)-supplemented. Secondly, let \(M=\oplus_{i=1}^nM_i\) be a \(\tau\)-supplemented module. Assume that \(M_i\) is \(\tau\)-\(M_j\)-projective for all \(j > i\). If each \(M_i\) is \(\tau\)-\(H\)-supplemented, then \(M\) is \(\tau\)-\(H\)-supplemented. We also investigate the relations between \(\tau\)-\(H\)-supplemented modules and \(\tau\)-(\(\oplus\)-)supplemented modules. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675 Algebra and Discrete Mathematics; Vol 12, No 1 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675/209 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
\(H\)-supplemented module \(\tau\)-\(H\)-supplemented module \(\tau\)-lifting module 16S90 16D10 16D70 16D99 |
spellingShingle |
\(H\)-supplemented module \(\tau\)-\(H\)-supplemented module \(\tau\)-lifting module 16S90 16D10 16D70 16D99 Talebi, Yahya Hamzekolaei, A. R. Moniri Tutuncu, Derya Keskin \(H\)-supplemented modules with respect to a preradical |
topic_facet |
\(H\)-supplemented module \(\tau\)-\(H\)-supplemented module \(\tau\)-lifting module 16S90 16D10 16D70 16D99 |
format |
Article |
author |
Talebi, Yahya Hamzekolaei, A. R. Moniri Tutuncu, Derya Keskin |
author_facet |
Talebi, Yahya Hamzekolaei, A. R. Moniri Tutuncu, Derya Keskin |
author_sort |
Talebi, Yahya |
title |
\(H\)-supplemented modules with respect to a preradical |
title_short |
\(H\)-supplemented modules with respect to a preradical |
title_full |
\(H\)-supplemented modules with respect to a preradical |
title_fullStr |
\(H\)-supplemented modules with respect to a preradical |
title_full_unstemmed |
\(H\)-supplemented modules with respect to a preradical |
title_sort |
\(h\)-supplemented modules with respect to a preradical |
description |
Let \(M\) be a right \(R\)-module and \(\tau\) a preradical. We call \(M\) \(\tau\)-\(H\)-supplemented if for every submodule \(A\) of \(M\) there exists a direct summand \(D\) of \(M\) such that \((A + D)/D \subseteq \tau(M/D)\) and \((A + D)/A \subseteq \tau(M/A)\). Let \(\tau\) be a cohereditary preradical. Firstly, for a duo module \(M = M_{1} \oplus M_{2}\) we prove that \(M\) is \(\tau\)-\(H\)-supplemented if and only if \(M_{1}\) and \(M_{2}\) are \(\tau\)-\(H\)-supplemented. Secondly, let \(M=\oplus_{i=1}^nM_i\) be a \(\tau\)-supplemented module. Assume that \(M_i\) is \(\tau\)-\(M_j\)-projective for all \(j > i\). If each \(M_i\) is \(\tau\)-\(H\)-supplemented, then \(M\) is \(\tau\)-\(H\)-supplemented. We also investigate the relations between \(\tau\)-\(H\)-supplemented modules and \(\tau\)-(\(\oplus\)-)supplemented modules. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/675 |
work_keys_str_mv |
AT talebiyahya hsupplementedmoduleswithrespecttoapreradical AT hamzekolaeiarmoniri hsupplementedmoduleswithrespecttoapreradical AT tutuncuderyakeskin hsupplementedmoduleswithrespecttoapreradical |
first_indexed |
2024-04-12T06:25:21Z |
last_indexed |
2024-04-12T06:25:21Z |
_version_ |
1796109221527289856 |