Diagonalizability theorem for matrices over certain domains

It is proved that \(R\) is a commutative adequate domain, then \(R\) is the domain of stable range 1 in localization in multiplicative closed set which corresponds s-torsion in the sense of Komarnitskii.

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Zabavsky, Bogdan, Domsha, Olga
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/676
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-676
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6762018-04-04T09:28:39Z Diagonalizability theorem for matrices over certain domains Zabavsky, Bogdan Domsha, Olga a Bezout domain, a ring of stable range 1, an adequate domain, a co-adequate element, an element of almost stable range 1, an elementary divisors ring Type AMS subject classification here.. It is proved that \(R\) is a commutative adequate domain, then \(R\) is the domain of stable range 1 in localization in multiplicative closed set which corresponds s-torsion in the sense of Komarnitskii. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/676 Algebra and Discrete Mathematics; Vol 12, No 1 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/676/210 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:28:39Z
collection OJS
language English
topic a Bezout domain
a ring of stable range 1
an adequate domain
a co-adequate element
an element of almost stable range 1
an elementary divisors ring
Type AMS subject classification here..
spellingShingle a Bezout domain
a ring of stable range 1
an adequate domain
a co-adequate element
an element of almost stable range 1
an elementary divisors ring
Type AMS subject classification here..
Zabavsky, Bogdan
Domsha, Olga
Diagonalizability theorem for matrices over certain domains
topic_facet a Bezout domain
a ring of stable range 1
an adequate domain
a co-adequate element
an element of almost stable range 1
an elementary divisors ring
Type AMS subject classification here..
format Article
author Zabavsky, Bogdan
Domsha, Olga
author_facet Zabavsky, Bogdan
Domsha, Olga
author_sort Zabavsky, Bogdan
title Diagonalizability theorem for matrices over certain domains
title_short Diagonalizability theorem for matrices over certain domains
title_full Diagonalizability theorem for matrices over certain domains
title_fullStr Diagonalizability theorem for matrices over certain domains
title_full_unstemmed Diagonalizability theorem for matrices over certain domains
title_sort diagonalizability theorem for matrices over certain domains
description It is proved that \(R\) is a commutative adequate domain, then \(R\) is the domain of stable range 1 in localization in multiplicative closed set which corresponds s-torsion in the sense of Komarnitskii.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/676
work_keys_str_mv AT zabavskybogdan diagonalizabilitytheoremformatricesovercertaindomains
AT domshaolga diagonalizabilitytheoremformatricesovercertaindomains
first_indexed 2025-07-17T10:37:17Z
last_indexed 2025-07-17T10:37:17Z
_version_ 1837890156089049088