On \(S\)-quasinormally embedded subgroups of finite groups
Let \(G\) be a finite group. A subgroup \(A\) is called: 1) \(S\)-quasinormal in \(G\) if \(A\) is permutable with all Sylow subgroups in \(G\) 2) \(S\)-quasinormally embedded in \(G\) if every Sylow subgroup of \(A\) is a Sylow subgroup of some \(S\)-quasinormal subgroup of \(G\). Let \(B_{seG}\)...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/689 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-689 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-6892018-04-04T09:42:12Z On \(S\)-quasinormally embedded subgroups of finite groups Al-Sharo, Kh. A. Shemetkova, Olga Yi, Xiaolan Finite group, p-nilpotent, S-quasinormal subgroup 20D10, 20D20, 20D25 Let \(G\) be a finite group. A subgroup \(A\) is called: 1) \(S\)-quasinormal in \(G\) if \(A\) is permutable with all Sylow subgroups in \(G\) 2) \(S\)-quasinormally embedded in \(G\) if every Sylow subgroup of \(A\) is a Sylow subgroup of some \(S\)-quasinormal subgroup of \(G\). Let \(B_{seG}\) be the subgroup generated by all the subgroups of \(B\) which are \(S\)-quasinormally embedded in \(G\). A subgroup \(B\) is called \(SE\)-supplemented in \(G\) if there exists a subgroup \(T\) such that \(G=BT\) and \(B\cap T\le B_{seG}\). The main result of the paper is the following.Theorem. Let \(H\) be a normal subgroup in \(G\), and \(p\) a prime divisor of \(|H|\) such that \((p-1,|H|)=1\). Let \(P\) be a Sylow \(p\)-subgroup in \(H\). Assume that all maximal subgroups in \(P\) are \(SE\)-supplemented in \(G\). Then \(H\) is \(p\)-nilpotent and all its \(G\)-chief \(p\)-factors are cyclic. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/689 Algebra and Discrete Mathematics; Vol 13, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/689/pdf Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-04T09:42:12Z |
| collection |
OJS |
| language |
English |
| topic |
Finite group p-nilpotent S-quasinormal subgroup 20D10 20D20 20D25 |
| spellingShingle |
Finite group p-nilpotent S-quasinormal subgroup 20D10 20D20 20D25 Al-Sharo, Kh. A. Shemetkova, Olga Yi, Xiaolan On \(S\)-quasinormally embedded subgroups of finite groups |
| topic_facet |
Finite group p-nilpotent S-quasinormal subgroup 20D10 20D20 20D25 |
| format |
Article |
| author |
Al-Sharo, Kh. A. Shemetkova, Olga Yi, Xiaolan |
| author_facet |
Al-Sharo, Kh. A. Shemetkova, Olga Yi, Xiaolan |
| author_sort |
Al-Sharo, Kh. A. |
| title |
On \(S\)-quasinormally embedded subgroups of finite groups |
| title_short |
On \(S\)-quasinormally embedded subgroups of finite groups |
| title_full |
On \(S\)-quasinormally embedded subgroups of finite groups |
| title_fullStr |
On \(S\)-quasinormally embedded subgroups of finite groups |
| title_full_unstemmed |
On \(S\)-quasinormally embedded subgroups of finite groups |
| title_sort |
on \(s\)-quasinormally embedded subgroups of finite groups |
| description |
Let \(G\) be a finite group. A subgroup \(A\) is called: 1) \(S\)-quasinormal in \(G\) if \(A\) is permutable with all Sylow subgroups in \(G\) 2) \(S\)-quasinormally embedded in \(G\) if every Sylow subgroup of \(A\) is a Sylow subgroup of some \(S\)-quasinormal subgroup of \(G\). Let \(B_{seG}\) be the subgroup generated by all the subgroups of \(B\) which are \(S\)-quasinormally embedded in \(G\). A subgroup \(B\) is called \(SE\)-supplemented in \(G\) if there exists a subgroup \(T\) such that \(G=BT\) and \(B\cap T\le B_{seG}\). The main result of the paper is the following.Theorem. Let \(H\) be a normal subgroup in \(G\), and \(p\) a prime divisor of \(|H|\) such that \((p-1,|H|)=1\). Let \(P\) be a Sylow \(p\)-subgroup in \(H\). Assume that all maximal subgroups in \(P\) are \(SE\)-supplemented in \(G\). Then \(H\) is \(p\)-nilpotent and all its \(G\)-chief \(p\)-factors are cyclic. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/689 |
| work_keys_str_mv |
AT alsharokha onsquasinormallyembeddedsubgroupsoffinitegroups AT shemetkovaolga onsquasinormallyembeddedsubgroupsoffinitegroups AT yixiaolan onsquasinormallyembeddedsubgroupsoffinitegroups |
| first_indexed |
2025-07-17T10:36:30Z |
| last_indexed |
2025-07-17T10:36:30Z |
| _version_ |
1837890107005206528 |