Ultrafilters on \(G\)-spaces
For a discrete group \(G\) and a discrete \(G\)-space \(X\), we identify the Stone-Cech compactifications \(\beta G\) and \(\beta X\) with the sets of all ultrafilters on \(G\) and \(X\), and apply the natural action of \(\beta G\) on \(\beta X\) to characterize large, thick, thin, sparse and scatte...
Збережено в:
| Дата: | 2015 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2015
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/69 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | For a discrete group \(G\) and a discrete \(G\)-space \(X\), we identify the Stone-Cech compactifications \(\beta G\) and \(\beta X\) with the sets of all ultrafilters on \(G\) and \(X\), and apply the natural action of \(\beta G\) on \(\beta X\) to characterize large, thick, thin, sparse and scattered subsets of \(X\). We use \(G\)-invariant partitions and colorings to define \(G\)-selective and \(G\)-Ramsey ultrafilters on \(X\). We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on \(\omega\), the \(T\)-points, and study interrelations between these ultrafilters and some classical ultrafilters on \(\omega\). |
|---|