Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\)  of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Ghasemi, Mohsen
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/692
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\)  of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(G\) are normal when \((|G|, 2)=(|G|,3)=1\), and \(X\) is not isomorphic to either Cay\((G,S)\), where \(|G|=5^n\), and \(|\)Aut(X)\(|\)\(=\)\(2^m.3.5^n\), where \(m \in \{2,3\}\) and \(n\geq 3\), or Cay\((G,S)\) where \(|G|=5q^n\) (\(q\) is prime) and \(|{\hbox{Aut}}(X)|=2^m.3.5.q^n\), where \(q\geq 7\),  \(m \in \{2,3\}\) and \(n\geq 1\).