Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\) of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(...
Gespeichert in:
Datum: | 2018 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/692 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\) of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(G\) are normal when \((|G|, 2)=(|G|,3)=1\), and \(X\) is not isomorphic to either Cay\((G,S)\), where \(|G|=5^n\), and \(|\)Aut(X)\(|\)\(=\)\(2^m.3.5^n\), where \(m \in \{2,3\}\) and \(n\geq 3\), or Cay\((G,S)\) where \(|G|=5q^n\) (\(q\) is prime) and \(|{\hbox{Aut}}(X)|=2^m.3.5.q^n\), where \(q\geq 7\), \(m \in \{2,3\}\) and \(n\geq 1\). |
---|