Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\)  of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Ghasemi, Mohsen
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/692
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\)  of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(G\) are normal when \((|G|, 2)=(|G|,3)=1\), and \(X\) is not isomorphic to either Cay\((G,S)\), where \(|G|=5^n\), and \(|\)Aut(X)\(|\)\(=\)\(2^m.3.5^n\), where \(m \in \{2,3\}\) and \(n\geq 3\), or Cay\((G,S)\) where \(|G|=5q^n\) (\(q\) is prime) and \(|{\hbox{Aut}}(X)|=2^m.3.5.q^n\), where \(q\geq 7\),  \(m \in \{2,3\}\) and \(n\geq 1\).