Symmetric modules over their endomorphism rings
Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2015
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings can be extended to symmetricmodules for this general setting. |
---|