Symmetric modules over their endomorphism rings

Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Ungor, Burcu, Kurtulmaz, Yosum, Halicioglu, Sait, Harmanci, Abdullah
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2015
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-71
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-712015-09-28T11:22:08Z Symmetric modules over their endomorphism rings Ungor, Burcu Kurtulmaz, Yosum Halicioglu, Sait Harmanci, Abdullah symmetric modules, reduced modules, rigid modules, semicommutative modules, abelian modules, Rickart modules, principally projective modules 13C99, 16D80 Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings can be extended to symmetricmodules for this general setting. Lugansk National Taras Shevchenko University 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71/20 Copyright (c) 2015 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic symmetric modules
reduced modules
rigid modules
semicommutative modules
abelian modules
Rickart modules
principally projective modules
13C99
16D80
spellingShingle symmetric modules
reduced modules
rigid modules
semicommutative modules
abelian modules
Rickart modules
principally projective modules
13C99
16D80
Ungor, Burcu
Kurtulmaz, Yosum
Halicioglu, Sait
Harmanci, Abdullah
Symmetric modules over their endomorphism rings
topic_facet symmetric modules
reduced modules
rigid modules
semicommutative modules
abelian modules
Rickart modules
principally projective modules
13C99
16D80
format Article
author Ungor, Burcu
Kurtulmaz, Yosum
Halicioglu, Sait
Harmanci, Abdullah
author_facet Ungor, Burcu
Kurtulmaz, Yosum
Halicioglu, Sait
Harmanci, Abdullah
author_sort Ungor, Burcu
title Symmetric modules over their endomorphism rings
title_short Symmetric modules over their endomorphism rings
title_full Symmetric modules over their endomorphism rings
title_fullStr Symmetric modules over their endomorphism rings
title_full_unstemmed Symmetric modules over their endomorphism rings
title_sort symmetric modules over their endomorphism rings
description Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings can be extended to symmetricmodules for this general setting.
publisher Lugansk National Taras Shevchenko University
publishDate 2015
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71
work_keys_str_mv AT ungorburcu symmetricmodulesovertheirendomorphismrings
AT kurtulmazyosum symmetricmodulesovertheirendomorphismrings
AT halicioglusait symmetricmodulesovertheirendomorphismrings
AT harmanciabdullah symmetricmodulesovertheirendomorphismrings
first_indexed 2024-04-12T06:27:28Z
last_indexed 2024-04-12T06:27:28Z
_version_ 1796109252434067456