Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order

Let \(G\) be a finite group. A subgroup of \(G\) is said to be \(S\)-quasinormal in \(G\) if it permutes with every Sylow subgroup of \(G\). We fix in every non-cyclic Sylow subgroup \(P\) of the generalized Fitting subgroup a subgroup \(D\) such that \(1 < |D| < |P|\) and characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Asaad, M., Csörgő, Piroska
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/717
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-717
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7172018-04-04T10:03:23Z Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order Asaad, M. Csörgő, Piroska \(S\)-quasinormality, generalized Fitting subgroup, supersolvability 20D10, 20D30 Let \(G\) be a finite group. A subgroup of \(G\) is said to be \(S\)-quasinormal in \(G\) if it permutes with every Sylow subgroup of \(G\). We fix in every non-cyclic Sylow subgroup \(P\) of the generalized Fitting subgroup a subgroup \(D\) such that \(1 < |D| < |P|\) and characterize \(G\) under the assumption that all subgroups \(H\) of \(P\) with \(|H| = |D|\) are \(S\)-quasinormal in \(G\). Some recent results are generalized. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/717 Algebra and Discrete Mathematics; Vol 14, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/717/249 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T10:03:23Z
collection OJS
language English
topic \(S\)-quasinormality
generalized Fitting subgroup
supersolvability
20D10
20D30
spellingShingle \(S\)-quasinormality
generalized Fitting subgroup
supersolvability
20D10
20D30
Asaad, M.
Csörgő, Piroska
Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order
topic_facet \(S\)-quasinormality
generalized Fitting subgroup
supersolvability
20D10
20D30
format Article
author Asaad, M.
Csörgő, Piroska
author_facet Asaad, M.
Csörgő, Piroska
author_sort Asaad, M.
title Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order
title_short Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order
title_full Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order
title_fullStr Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order
title_full_unstemmed Characterization of finite groups with some \(S\)-quasinormal subgroups of fixed order
title_sort characterization of finite groups with some \(s\)-quasinormal subgroups of fixed order
description Let \(G\) be a finite group. A subgroup of \(G\) is said to be \(S\)-quasinormal in \(G\) if it permutes with every Sylow subgroup of \(G\). We fix in every non-cyclic Sylow subgroup \(P\) of the generalized Fitting subgroup a subgroup \(D\) such that \(1 < |D| < |P|\) and characterize \(G\) under the assumption that all subgroups \(H\) of \(P\) with \(|H| = |D|\) are \(S\)-quasinormal in \(G\). Some recent results are generalized.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/717
work_keys_str_mv AT asaadm characterizationoffinitegroupswithsomesquasinormalsubgroupsoffixedorder
AT csorgopiroska characterizationoffinitegroupswithsomesquasinormalsubgroupsoffixedorder
first_indexed 2025-07-17T10:31:30Z
last_indexed 2025-07-17T10:31:30Z
_version_ 1837890138490798080