On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents

Let \(I\) be a finite set (without \(0\)) and \(J\) a subset of \(I\times I\)  without diagonal elements. Let \(S(I,J)\) denotes the semigroup generated by \(e_0=0\) and \(e_i\), \(i\in I\), with the following  relations: \(e_i^2=e_i\) for any \(i\in I\), \(e_ie_j=0\) for any  \((i,j)\in J\). In thi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Bondarenko, Vitaliy M., Tertychna, Olena M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/718
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-718
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7182018-04-04T10:03:23Z On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents Bondarenko, Vitaliy M. Tertychna, Olena M. semigroup, matrix representations, defining relations, \(0\)-semisimple matrix 16G, 20M30 Let \(I\) be a finite set (without \(0\)) and \(J\) a subset of \(I\times I\)  without diagonal elements. Let \(S(I,J)\) denotes the semigroup generated by \(e_0=0\) and \(e_i\), \(i\in I\), with the following  relations: \(e_i^2=e_i\) for any \(i\in I\), \(e_ie_j=0\) for any  \((i,j)\in J\). In this paper we prove that, for any finite semigroup \(S=S(I,J)\) and any its matrix representation \(M\) over a field \(k\), each matrix of the form \(\sum_{i \in I}\alpha_i M(e_i)\) with \(\alpha_i\in k\) is similar to the direct sum of some invertible and zero matrices. We also formulate this fact in terms of elements of the semigroup algebra. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/718 Algebra and Discrete Mathematics; Vol 14, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/718/250 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T10:03:23Z
collection OJS
language English
topic semigroup
matrix representations
defining relations
\(0\)-semisimple matrix
16G
20M30
spellingShingle semigroup
matrix representations
defining relations
\(0\)-semisimple matrix
16G
20M30
Bondarenko, Vitaliy M.
Tertychna, Olena M.
On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents
topic_facet semigroup
matrix representations
defining relations
\(0\)-semisimple matrix
16G
20M30
format Article
author Bondarenko, Vitaliy M.
Tertychna, Olena M.
author_facet Bondarenko, Vitaliy M.
Tertychna, Olena M.
author_sort Bondarenko, Vitaliy M.
title On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents
title_short On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents
title_full On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents
title_fullStr On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents
title_full_unstemmed On \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents
title_sort on \(0\)-semisimplicity of linear hulls of generators for semigroups generated by idempotents
description Let \(I\) be a finite set (without \(0\)) and \(J\) a subset of \(I\times I\)  without diagonal elements. Let \(S(I,J)\) denotes the semigroup generated by \(e_0=0\) and \(e_i\), \(i\in I\), with the following  relations: \(e_i^2=e_i\) for any \(i\in I\), \(e_ie_j=0\) for any  \((i,j)\in J\). In this paper we prove that, for any finite semigroup \(S=S(I,J)\) and any its matrix representation \(M\) over a field \(k\), each matrix of the form \(\sum_{i \in I}\alpha_i M(e_i)\) with \(\alpha_i\in k\) is similar to the direct sum of some invertible and zero matrices. We also formulate this fact in terms of elements of the semigroup algebra.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/718
work_keys_str_mv AT bondarenkovitaliym on0semisimplicityoflinearhullsofgeneratorsforsemigroupsgeneratedbyidempotents
AT tertychnaolenam on0semisimplicityoflinearhullsofgeneratorsforsemigroupsgeneratedbyidempotents
first_indexed 2025-07-17T10:32:51Z
last_indexed 2025-07-17T10:32:51Z
_version_ 1837889877263253504