Prethick subsets in partitions of groups
A subset \(S\) of a group \(G\) is called thick if, for any finite subset \(F\) of \(G\), there exists \(g\in G\) such that \(Fg\subseteq S\), and \(k\)-prethick, \(k\in \mathbb{N}\) if there exists a subset \(K\) of \(G\) such that \(|K|=k\) and \(KS\) is thick. For every finite partition \(\mathca...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-725 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-7252018-04-04T10:03:23Z Prethick subsets in partitions of groups Protasov, Igor Slobodianiuk, Sergiy thick and \(k\)-prethick subsets of groups, \(k\)-meager partition of a group 05B40, 20A05 A subset \(S\) of a group \(G\) is called thick if, for any finite subset \(F\) of \(G\), there exists \(g\in G\) such that \(Fg\subseteq S\), and \(k\)-prethick, \(k\in \mathbb{N}\) if there exists a subset \(K\) of \(G\) such that \(|K|=k\) and \(KS\) is thick. For every finite partition \(\mathcal{P}\) of \(G\), at least one cell of \(\mathcal{P}\) is \(k\)-prethick for some \(k\in \mathbb{N}\). We show that if an infinite group \(G\) is either Abelian, or countable locally finite, or countable residually finite then, for each \(k\in \mathbb{N}\), \(G\) can be partitioned in two not \(k\)-prethick subsets. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725 Algebra and Discrete Mathematics; Vol 14, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725/257 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
thick and \(k\)-prethick subsets of groups \(k\)-meager partition of a group 05B40 20A05 |
spellingShingle |
thick and \(k\)-prethick subsets of groups \(k\)-meager partition of a group 05B40 20A05 Protasov, Igor Slobodianiuk, Sergiy Prethick subsets in partitions of groups |
topic_facet |
thick and \(k\)-prethick subsets of groups \(k\)-meager partition of a group 05B40 20A05 |
format |
Article |
author |
Protasov, Igor Slobodianiuk, Sergiy |
author_facet |
Protasov, Igor Slobodianiuk, Sergiy |
author_sort |
Protasov, Igor |
title |
Prethick subsets in partitions of groups |
title_short |
Prethick subsets in partitions of groups |
title_full |
Prethick subsets in partitions of groups |
title_fullStr |
Prethick subsets in partitions of groups |
title_full_unstemmed |
Prethick subsets in partitions of groups |
title_sort |
prethick subsets in partitions of groups |
description |
A subset \(S\) of a group \(G\) is called thick if, for any finite subset \(F\) of \(G\), there exists \(g\in G\) such that \(Fg\subseteq S\), and \(k\)-prethick, \(k\in \mathbb{N}\) if there exists a subset \(K\) of \(G\) such that \(|K|=k\) and \(KS\) is thick. For every finite partition \(\mathcal{P}\) of \(G\), at least one cell of \(\mathcal{P}\) is \(k\)-prethick for some \(k\in \mathbb{N}\). We show that if an infinite group \(G\) is either Abelian, or countable locally finite, or countable residually finite then, for each \(k\in \mathbb{N}\), \(G\) can be partitioned in two not \(k\)-prethick subsets. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725 |
work_keys_str_mv |
AT protasovigor prethicksubsetsinpartitionsofgroups AT slobodianiuksergiy prethicksubsetsinpartitionsofgroups |
first_indexed |
2024-04-12T06:26:16Z |
last_indexed |
2024-04-12T06:26:16Z |
_version_ |
1796109222164824064 |