Prethick subsets in partitions of groups

A subset \(S\) of a group \(G\) is called thick if, for any finite subset \(F\) of \(G\), there exists \(g\in G\) such that \(Fg\subseteq S\), and \(k\)-prethick, \(k\in \mathbb{N}\) if there exists a subset \(K\) of \(G\) such that \(|K|=k\) and \(KS\) is thick. For every finite partition \(\mathca...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Protasov, Igor, Slobodianiuk, Sergiy
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-725
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7252018-04-04T10:03:23Z Prethick subsets in partitions of groups Protasov, Igor Slobodianiuk, Sergiy thick and \(k\)-prethick subsets of groups, \(k\)-meager partition of a group 05B40, 20A05 A subset \(S\) of a group \(G\) is called thick if, for any finite subset \(F\) of \(G\), there exists \(g\in G\) such that \(Fg\subseteq S\), and \(k\)-prethick, \(k\in \mathbb{N}\) if there exists a subset \(K\) of \(G\) such that \(|K|=k\) and \(KS\) is thick. For every finite partition \(\mathcal{P}\) of \(G\), at least one cell of \(\mathcal{P}\) is \(k\)-prethick for some \(k\in \mathbb{N}\). We show that if an infinite group \(G\) is either Abelian, or countable locally finite, or countable residually finite then, for each \(k\in \mathbb{N}\), \(G\) can be partitioned in two not \(k\)-prethick subsets. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725 Algebra and Discrete Mathematics; Vol 14, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725/257 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic thick and \(k\)-prethick subsets of groups
\(k\)-meager partition of a group
05B40
20A05
spellingShingle thick and \(k\)-prethick subsets of groups
\(k\)-meager partition of a group
05B40
20A05
Protasov, Igor
Slobodianiuk, Sergiy
Prethick subsets in partitions of groups
topic_facet thick and \(k\)-prethick subsets of groups
\(k\)-meager partition of a group
05B40
20A05
format Article
author Protasov, Igor
Slobodianiuk, Sergiy
author_facet Protasov, Igor
Slobodianiuk, Sergiy
author_sort Protasov, Igor
title Prethick subsets in partitions of groups
title_short Prethick subsets in partitions of groups
title_full Prethick subsets in partitions of groups
title_fullStr Prethick subsets in partitions of groups
title_full_unstemmed Prethick subsets in partitions of groups
title_sort prethick subsets in partitions of groups
description A subset \(S\) of a group \(G\) is called thick if, for any finite subset \(F\) of \(G\), there exists \(g\in G\) such that \(Fg\subseteq S\), and \(k\)-prethick, \(k\in \mathbb{N}\) if there exists a subset \(K\) of \(G\) such that \(|K|=k\) and \(KS\) is thick. For every finite partition \(\mathcal{P}\) of \(G\), at least one cell of \(\mathcal{P}\) is \(k\)-prethick for some \(k\in \mathbb{N}\). We show that if an infinite group \(G\) is either Abelian, or countable locally finite, or countable residually finite then, for each \(k\in \mathbb{N}\), \(G\) can be partitioned in two not \(k\)-prethick subsets.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/725
work_keys_str_mv AT protasovigor prethicksubsetsinpartitionsofgroups
AT slobodianiuksergiy prethicksubsetsinpartitionsofgroups
first_indexed 2024-04-12T06:26:16Z
last_indexed 2024-04-12T06:26:16Z
_version_ 1796109222164824064