On radical square zero rings

Let \(\Lambda\) be a connected left artinian ring with radical square zero and with \(n\) simple modules. If \(\Lambda\)  is not self-injective, then we show that any module \(M\) with \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n+1\) is projective. We also determine the structure of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Ringel, Claus Michael, Xiong, Bao-Lin
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-727
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7272018-04-04T10:03:23Z On radical square zero rings Ringel, Claus Michael Xiong, Bao-Lin Artin algebras; left artinian rings; representations, modules; Gorenstein modules, CM modules; self-injective algebras; radical square zero algebras 16D90, 16G10; 16G70 Let \(\Lambda\) be a connected left artinian ring with radical square zero and with \(n\) simple modules. If \(\Lambda\)  is not self-injective, then we show that any module \(M\) with \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n+1\) is projective. We also determine the structure of the artin algebras with radical square zero and \(n\) simple modules which have a non-projective module \(M\) such that \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727 Algebra and Discrete Mathematics; Vol 14, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727/259 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T10:03:23Z
collection OJS
language English
topic Artin algebras; left artinian rings; representations
modules; Gorenstein modules
CM modules; self-injective algebras; radical square zero algebras
16D90
16G10; 16G70
spellingShingle Artin algebras; left artinian rings; representations
modules; Gorenstein modules
CM modules; self-injective algebras; radical square zero algebras
16D90
16G10; 16G70
Ringel, Claus Michael
Xiong, Bao-Lin
On radical square zero rings
topic_facet Artin algebras; left artinian rings; representations
modules; Gorenstein modules
CM modules; self-injective algebras; radical square zero algebras
16D90
16G10; 16G70
format Article
author Ringel, Claus Michael
Xiong, Bao-Lin
author_facet Ringel, Claus Michael
Xiong, Bao-Lin
author_sort Ringel, Claus Michael
title On radical square zero rings
title_short On radical square zero rings
title_full On radical square zero rings
title_fullStr On radical square zero rings
title_full_unstemmed On radical square zero rings
title_sort on radical square zero rings
description Let \(\Lambda\) be a connected left artinian ring with radical square zero and with \(n\) simple modules. If \(\Lambda\)  is not self-injective, then we show that any module \(M\) with \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n+1\) is projective. We also determine the structure of the artin algebras with radical square zero and \(n\) simple modules which have a non-projective module \(M\) such that \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727
work_keys_str_mv AT ringelclausmichael onradicalsquarezerorings
AT xiongbaolin onradicalsquarezerorings
first_indexed 2025-07-17T10:32:52Z
last_indexed 2025-07-17T10:32:52Z
_version_ 1837889878008791040