Generalised triangle groups of type \((3,q,2)\)
If \(G\) is a group with a presentation of the form \(\langle x,y|x^3=y^q=W(x,y)^2=1\rangle\), then either \(G\) is virtually soluble or \(G\) contains a free subgroup of rank \(2\). This provides additional evidence in favour of a conjecture of Rosenberger.
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-730 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-7302018-04-26T00:47:27Z Generalised triangle groups of type \((3,q,2)\) Howie, James Generalized triangle groups, Tits alternative 20F05, 20F06, 20E05 If \(G\) is a group with a presentation of the form \(\langle x,y|x^3=y^q=W(x,y)^2=1\rangle\), then either \(G\) is virtually soluble or \(G\) contains a free subgroup of rank \(2\). This provides additional evidence in favour of a conjecture of Rosenberger. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730 Algebra and Discrete Mathematics; Vol 15, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730/262 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-26T00:47:27Z |
| collection |
OJS |
| language |
English |
| topic |
Generalized triangle groups Tits alternative 20F05 20F06 20E05 |
| spellingShingle |
Generalized triangle groups Tits alternative 20F05 20F06 20E05 Howie, James Generalised triangle groups of type \((3,q,2)\) |
| topic_facet |
Generalized triangle groups Tits alternative 20F05 20F06 20E05 |
| format |
Article |
| author |
Howie, James |
| author_facet |
Howie, James |
| author_sort |
Howie, James |
| title |
Generalised triangle groups of type \((3,q,2)\) |
| title_short |
Generalised triangle groups of type \((3,q,2)\) |
| title_full |
Generalised triangle groups of type \((3,q,2)\) |
| title_fullStr |
Generalised triangle groups of type \((3,q,2)\) |
| title_full_unstemmed |
Generalised triangle groups of type \((3,q,2)\) |
| title_sort |
generalised triangle groups of type \((3,q,2)\) |
| description |
If \(G\) is a group with a presentation of the form \(\langle x,y|x^3=y^q=W(x,y)^2=1\rangle\), then either \(G\) is virtually soluble or \(G\) contains a free subgroup of rank \(2\). This provides additional evidence in favour of a conjecture of Rosenberger. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730 |
| work_keys_str_mv |
AT howiejames generalisedtrianglegroupsoftype3q2 |
| first_indexed |
2025-07-17T10:36:33Z |
| last_indexed |
2025-07-17T10:36:33Z |
| _version_ |
1837890109685366784 |