On elementary domains of partial projective representations of groups
We characterize the finite groups containing only elementary domains of factor sets of partial projective representations. A condition for a finite subset \(A\) of a group \(G,\) which contains the unity of the group, to induce an elementary partial representation, of \(G\) whose (idempotent) fact...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/735 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | We characterize the finite groups containing only elementary domains of factor sets of partial projective representations. A condition for a finite subset \(A\) of a group \(G,\) which contains the unity of the group, to induce an elementary partial representation, of \(G\) whose (idempotent) factor set is total is given. Finally, we characterize the elementary partial representation of abelian groups of degrees \(\le 4\) with total factor set. |
|---|