Associative words in the symmetric group of degree three

Let G be a group. An element \(w(x,y)\) of the absolutely free group on  free generators \(x,y\) is called an associative word in \(G\) if the equality \(w(w(g_1,g_2),g_3)=w(g_1,w(g_2,g_3))\) holds for all \(g_1,g_2 \in G\). In this paper we determine all associative words in the symmetric group  on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Plonka, Ernest
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/736
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-736
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7362018-04-26T00:47:27Z Associative words in the symmetric group of degree three Plonka, Ernest associative words, symmetric group \(S_3\) 20B30, 08A40,20F12 Let G be a group. An element \(w(x,y)\) of the absolutely free group on  free generators \(x,y\) is called an associative word in \(G\) if the equality \(w(w(g_1,g_2),g_3)=w(g_1,w(g_2,g_3))\) holds for all \(g_1,g_2 \in G\). In this paper we determine all associative words in the symmetric group  on three letters. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/736 Algebra and Discrete Mathematics; Vol 15, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/736/267 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T00:47:27Z
collection OJS
language English
topic associative words
symmetric group \(S_3\)
20B30
08A40,20F12
spellingShingle associative words
symmetric group \(S_3\)
20B30
08A40,20F12
Plonka, Ernest
Associative words in the symmetric group of degree three
topic_facet associative words
symmetric group \(S_3\)
20B30
08A40,20F12
format Article
author Plonka, Ernest
author_facet Plonka, Ernest
author_sort Plonka, Ernest
title Associative words in the symmetric group of degree three
title_short Associative words in the symmetric group of degree three
title_full Associative words in the symmetric group of degree three
title_fullStr Associative words in the symmetric group of degree three
title_full_unstemmed Associative words in the symmetric group of degree three
title_sort associative words in the symmetric group of degree three
description Let G be a group. An element \(w(x,y)\) of the absolutely free group on  free generators \(x,y\) is called an associative word in \(G\) if the equality \(w(w(g_1,g_2),g_3)=w(g_1,w(g_2,g_3))\) holds for all \(g_1,g_2 \in G\). In this paper we determine all associative words in the symmetric group  on three letters.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/736
work_keys_str_mv AT plonkaernest associativewordsinthesymmetricgroupofdegreethree
first_indexed 2025-07-17T10:32:53Z
last_indexed 2025-07-17T10:32:53Z
_version_ 1837889878653665280