Automorphic equivalence of the representations of Lie algebras
In this paper we research the algebraic geometry of the representations of Lie algebras over fixed field \(k\). We assume that this field is infinite and char \(\left(k\right) =0.\) We consider the representations of Lie algebras as \(2\)-sorted universal algebras. The representations of groups were...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | Shestakov, I., Tsurkov, A. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/737 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Automorphic equivalence of the representations of Lie algebras
von: Shestakov, I., et al.
Veröffentlicht: (2018) -
Geometrical equivalence and action type geometrical equivalence of group representations
von: Simoes da Silva, J., et al.
Veröffentlicht: (2021) -
Geometrical equivalence and action type geometrical equivalence of group representations
von: Simoes da Silva, J., et al.
Veröffentlicht: (2021) -
Normal automorphisms of the metabelian product of free abelian Lie algebras
von: Öğüşlü, N. Ş.
Veröffentlicht: (2021) -
A note on simplicity of contact Lie algebras over \(\operatorname{GF}(2)\)
von: Zargeh, Chia
Veröffentlicht: (2018)