Weighted zero-sum problems over \(C_3^r\)

Let \(C_n\) be the cyclic group of order \(n\) and set \(s_{A}(C_n^r)\) as the smallest integer \(\ell\) such that every sequence \(\mathcal{S}\) in \(C_n^r\) of length at least \(\ell\) has an \(A\)-zero-sum subsequence of length equal to \(\exp(C_n^r)\), for \(A=\{-1,1\}\). In this paper, among ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Godinho, Hemar, Lemos, Abílio, Marques, Diego
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/743
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(C_n\) be the cyclic group of order \(n\) and set \(s_{A}(C_n^r)\) as the smallest integer \(\ell\) such that every sequence \(\mathcal{S}\) in \(C_n^r\) of length at least \(\ell\) has an \(A\)-zero-sum subsequence of length equal to \(\exp(C_n^r)\), for \(A=\{-1,1\}\). In this paper, among other things, we give estimates for \(s_A(C_3^r)\),  and  prove that \(s_A(C_{3}^{3})=9\), \(s_A(C_{3}^{4})=21\) and \(41\leq s_A(C_{3}^{5})\leq45\).