Weighted zero-sum problems over \(C_3^r\)

Let \(C_n\) be the cyclic group of order \(n\) and set \(s_{A}(C_n^r)\) as the smallest integer \(\ell\) such that every sequence \(\mathcal{S}\) in \(C_n^r\) of length at least \(\ell\) has an \(A\)-zero-sum subsequence of length equal to \(\exp(C_n^r)\), for \(A=\{-1,1\}\). In this paper, among ot...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Godinho, Hemar, Lemos, Abílio, Marques, Diego
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/743
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-743
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7432018-04-28T03:04:31Z Weighted zero-sum problems over \(C_3^r\) Godinho, Hemar Lemos, Abílio Marques, Diego Weighted zero-sum, abelian groups 20D60, 20K01 Let \(C_n\) be the cyclic group of order \(n\) and set \(s_{A}(C_n^r)\) as the smallest integer \(\ell\) such that every sequence \(\mathcal{S}\) in \(C_n^r\) of length at least \(\ell\) has an \(A\)-zero-sum subsequence of length equal to \(\exp(C_n^r)\), for \(A=\{-1,1\}\). In this paper, among other things, we give estimates for \(s_A(C_3^r)\),  and  prove that \(s_A(C_{3}^{3})=9\), \(s_A(C_{3}^{4})=21\) and \(41\leq s_A(C_{3}^{5})\leq45\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/743 Algebra and Discrete Mathematics; Vol 15, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/743/pdf Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-28T03:04:31Z
collection OJS
language English
topic Weighted zero-sum
abelian groups
20D60
20K01
spellingShingle Weighted zero-sum
abelian groups
20D60
20K01
Godinho, Hemar
Lemos, Abílio
Marques, Diego
Weighted zero-sum problems over \(C_3^r\)
topic_facet Weighted zero-sum
abelian groups
20D60
20K01
format Article
author Godinho, Hemar
Lemos, Abílio
Marques, Diego
author_facet Godinho, Hemar
Lemos, Abílio
Marques, Diego
author_sort Godinho, Hemar
title Weighted zero-sum problems over \(C_3^r\)
title_short Weighted zero-sum problems over \(C_3^r\)
title_full Weighted zero-sum problems over \(C_3^r\)
title_fullStr Weighted zero-sum problems over \(C_3^r\)
title_full_unstemmed Weighted zero-sum problems over \(C_3^r\)
title_sort weighted zero-sum problems over \(c_3^r\)
description Let \(C_n\) be the cyclic group of order \(n\) and set \(s_{A}(C_n^r)\) as the smallest integer \(\ell\) such that every sequence \(\mathcal{S}\) in \(C_n^r\) of length at least \(\ell\) has an \(A\)-zero-sum subsequence of length equal to \(\exp(C_n^r)\), for \(A=\{-1,1\}\). In this paper, among other things, we give estimates for \(s_A(C_3^r)\),  and  prove that \(s_A(C_{3}^{3})=9\), \(s_A(C_{3}^{4})=21\) and \(41\leq s_A(C_{3}^{5})\leq45\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/743
work_keys_str_mv AT godinhohemar weightedzerosumproblemsoverc3r
AT lemosabilio weightedzerosumproblemsoverc3r
AT marquesdiego weightedzerosumproblemsoverc3r
first_indexed 2025-07-17T10:34:39Z
last_indexed 2025-07-17T10:34:39Z
_version_ 1837889990105759744