Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)

In this work the closure operators of a category of modules \(R\)-Mod are studied. Every closure operator \(C\) of \(R\)-Mod defines two functions \( \mathcal{F}_1^{C}\) and \(\mathcal{F}_2^{C}\), which  in every module \(M\) distinguish the set of \(C\)-dense submodules  \(\mathcal{F}_1^{C}(M)\) an...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Kashu, A. I.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-744
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7442018-04-26T00:55:03Z Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators) Kashu, A. I. ring, module, lattice, preradical, closure operator, lattice of submodules, dense submodule, closed submodule 16D90, 16S90, 06B23 In this work the closure operators of a category of modules \(R\)-Mod are studied. Every closure operator \(C\) of \(R\)-Mod defines two functions \( \mathcal{F}_1^{C}\) and \(\mathcal{F}_2^{C}\), which  in every module \(M\) distinguish the set of \(C\)-dense submodules  \(\mathcal{F}_1^{C}(M)\) and the set of \(C\)-closed submodules \(\mathcal{F}_2^{C}(M)\). By means of these functions three types of closure operators are described: 1)weakly hereditary; 2)idempotent; 3)weakly hereditary and idempotent. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744 Algebra and Discrete Mathematics; Vol 15, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744/274 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T00:55:03Z
collection OJS
language English
topic ring
module
lattice
preradical
closure operator
lattice of submodules
dense submodule
closed submodule
16D90
16S90
06B23
spellingShingle ring
module
lattice
preradical
closure operator
lattice of submodules
dense submodule
closed submodule
16D90
16S90
06B23
Kashu, A. I.
Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
topic_facet ring
module
lattice
preradical
closure operator
lattice of submodules
dense submodule
closed submodule
16D90
16S90
06B23
format Article
author Kashu, A. I.
author_facet Kashu, A. I.
author_sort Kashu, A. I.
title Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_short Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_full Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_fullStr Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_full_unstemmed Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_sort closure operators in the categories of modules part i (weakly hereditary and idempotent operators)
description In this work the closure operators of a category of modules \(R\)-Mod are studied. Every closure operator \(C\) of \(R\)-Mod defines two functions \( \mathcal{F}_1^{C}\) and \(\mathcal{F}_2^{C}\), which  in every module \(M\) distinguish the set of \(C\)-dense submodules  \(\mathcal{F}_1^{C}(M)\) and the set of \(C\)-closed submodules \(\mathcal{F}_2^{C}(M)\). By means of these functions three types of closure operators are described: 1)weakly hereditary; 2)idempotent; 3)weakly hereditary and idempotent.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744
work_keys_str_mv AT kashuai closureoperatorsinthecategoriesofmodulespartiweaklyhereditaryandidempotentoperators
first_indexed 2025-07-17T10:36:34Z
last_indexed 2025-07-17T10:36:34Z
_version_ 1837890110945755136