The \(p\)–gen nature of \(M_0(V)\) (I)
Let \( V \) be a finite group (not elementary two) and \( p\geq 5 \) a prime. The question as to when the nearring \( M_0(V) \) of all zero-fixing self-maps on \( V \) is generated by a unit of order \( p \) is difficult. In this paper we show \( M_0(V) \) is so generated if and only if \( V \) do...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/746 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-746 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-7462018-04-26T00:55:03Z The \(p\)–gen nature of \(M_0(V)\) (I) Scott, Stuart D. nearring, unit, cycles (\(p\)-cycles), fixed–point–free, \(p\)–gen 16Y30 Let \( V \) be a finite group (not elementary two) and \( p\geq 5 \) a prime. The question as to when the nearring \( M_0(V) \) of all zero-fixing self-maps on \( V \) is generated by a unit of order \( p \) is difficult. In this paper we show \( M_0(V) \) is so generated if and only if \( V \) does not belong to one of three finite disjoint families \( {\cal D}^\#(1,p) \) (=\( {\cal D}(1,p)\cup\{\{0\}\}) \), \( {\cal D}(2,p) \) and \( {\cal D}(3,p) \) of groups, where \( {\cal D}(n,p) \) are those groups \( G \) (not elementary two) with \( |G|\leq np \) and \( \delta(G)>(n-1)p \) (see [1] or §.1 for the definition of \(\delta(G) \)). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/746 Algebra and Discrete Mathematics; Vol 15, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/746/276 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-26T00:55:03Z |
| collection |
OJS |
| language |
English |
| topic |
nearring unit cycles (\(p\)-cycles) fixed–point–free \(p\)–gen 16Y30 |
| spellingShingle |
nearring unit cycles (\(p\)-cycles) fixed–point–free \(p\)–gen 16Y30 Scott, Stuart D. The \(p\)–gen nature of \(M_0(V)\) (I) |
| topic_facet |
nearring unit cycles (\(p\)-cycles) fixed–point–free \(p\)–gen 16Y30 |
| format |
Article |
| author |
Scott, Stuart D. |
| author_facet |
Scott, Stuart D. |
| author_sort |
Scott, Stuart D. |
| title |
The \(p\)–gen nature of \(M_0(V)\) (I) |
| title_short |
The \(p\)–gen nature of \(M_0(V)\) (I) |
| title_full |
The \(p\)–gen nature of \(M_0(V)\) (I) |
| title_fullStr |
The \(p\)–gen nature of \(M_0(V)\) (I) |
| title_full_unstemmed |
The \(p\)–gen nature of \(M_0(V)\) (I) |
| title_sort |
\(p\)–gen nature of \(m_0(v)\) (i) |
| description |
Let \( V \) be a finite group (not elementary two) and \( p\geq 5 \) a prime. The question as to when the nearring \( M_0(V) \) of all zero-fixing self-maps on \( V \) is generated by a unit of order \( p \) is difficult. In this paper we show \( M_0(V) \) is so generated if and only if \( V \) does not belong to one of three finite disjoint families \( {\cal D}^\#(1,p) \) (=\( {\cal D}(1,p)\cup\{\{0\}\}) \), \( {\cal D}(2,p) \) and \( {\cal D}(3,p) \) of groups, where \( {\cal D}(n,p) \) are those groups \( G \) (not elementary two) with \( |G|\leq np \) and \( \delta(G)>(n-1)p \) (see [1] or §.1 for the definition of \(\delta(G) \)). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/746 |
| work_keys_str_mv |
AT scottstuartd thepgennatureofm0vi AT scottstuartd pgennatureofm0vi |
| first_indexed |
2025-07-17T10:30:31Z |
| last_indexed |
2025-07-17T10:30:31Z |
| _version_ |
1837889829797363712 |