Power graph of finite abelian groups
Let \(G\) be a group. The power graph \(\Gamma_P(G)\) of \(G\) is a graph with vertex set \(V(\Gamma_P(G)) = G\) and two distinct vertices \(x\) and \(y\) are adjacent in \(\Gamma_P(G)\) if and only if either \(x^i=y\) or \(y^j=x\), where \(2\leq i,j \leq n\). In this paper, we obtain some fundament...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/753 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-753 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-7532018-04-26T01:26:05Z Power graph of finite abelian groups Chelvam, T. Tamizh Sattanathan, M. power graph, planar graph, Eulerian graph, finite group 05C25 Let \(G\) be a group. The power graph \(\Gamma_P(G)\) of \(G\) is a graph with vertex set \(V(\Gamma_P(G)) = G\) and two distinct vertices \(x\) and \(y\) are adjacent in \(\Gamma_P(G)\) if and only if either \(x^i=y\) or \(y^j=x\), where \(2\leq i,j \leq n\). In this paper, we obtain some fundamental characterizations of the power graph. Also, we characterize certain classes of power graphs of finite abelian groups. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/753 Algebra and Discrete Mathematics; Vol 16, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/753/282 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-26T01:26:05Z |
| collection |
OJS |
| language |
English |
| topic |
power graph planar graph Eulerian graph finite group 05C25 |
| spellingShingle |
power graph planar graph Eulerian graph finite group 05C25 Chelvam, T. Tamizh Sattanathan, M. Power graph of finite abelian groups |
| topic_facet |
power graph planar graph Eulerian graph finite group 05C25 |
| format |
Article |
| author |
Chelvam, T. Tamizh Sattanathan, M. |
| author_facet |
Chelvam, T. Tamizh Sattanathan, M. |
| author_sort |
Chelvam, T. Tamizh |
| title |
Power graph of finite abelian groups |
| title_short |
Power graph of finite abelian groups |
| title_full |
Power graph of finite abelian groups |
| title_fullStr |
Power graph of finite abelian groups |
| title_full_unstemmed |
Power graph of finite abelian groups |
| title_sort |
power graph of finite abelian groups |
| description |
Let \(G\) be a group. The power graph \(\Gamma_P(G)\) of \(G\) is a graph with vertex set \(V(\Gamma_P(G)) = G\) and two distinct vertices \(x\) and \(y\) are adjacent in \(\Gamma_P(G)\) if and only if either \(x^i=y\) or \(y^j=x\), where \(2\leq i,j \leq n\). In this paper, we obtain some fundamental characterizations of the power graph. Also, we characterize certain classes of power graphs of finite abelian groups. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/753 |
| work_keys_str_mv |
AT chelvamttamizh powergraphoffiniteabeliangroups AT sattanathanm powergraphoffiniteabeliangroups |
| first_indexed |
2025-07-17T10:36:35Z |
| last_indexed |
2025-07-17T10:36:35Z |
| _version_ |
1837890111402934272 |