Closure operators in the categories of modules Part II (Hereditary and cohereditary operators)

This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category \(R\)-Mod are described. Using the results of [1], in this part the other classes of closure operators \(C\) are characterized by the associated functions \(\mathcal...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Kashu, A. I.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/757
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-757
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7572018-04-26T01:26:05Z Closure operators in the categories of modules Part II (Hereditary and cohereditary operators) Kashu, A. I. ring, module, preradical, closure operator, dense submodule, closed submodule, hereditary ( cohereditary) closure operator 16D90, 16S90, 06B23 This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category \(R\)-Mod are described. Using the results of [1], in this part the other classes of closure operators \(C\) are characterized by the associated functions \(\mathcal{F}_1^C\)  and  \(\mathcal{F}_2^{C}\)  which separate in every module \(M \in R\)-Mod the sets of  \(C\)-dense submodules and \(C\)-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/757 Algebra and Discrete Mathematics; Vol 16, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/757/286 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic ring
module
preradical
closure operator
dense submodule
closed submodule
hereditary ( cohereditary) closure operator
16D90
16S90
06B23
spellingShingle ring
module
preradical
closure operator
dense submodule
closed submodule
hereditary ( cohereditary) closure operator
16D90
16S90
06B23
Kashu, A. I.
Closure operators in the categories of modules Part II (Hereditary and cohereditary operators)
topic_facet ring
module
preradical
closure operator
dense submodule
closed submodule
hereditary ( cohereditary) closure operator
16D90
16S90
06B23
format Article
author Kashu, A. I.
author_facet Kashu, A. I.
author_sort Kashu, A. I.
title Closure operators in the categories of modules Part II (Hereditary and cohereditary operators)
title_short Closure operators in the categories of modules Part II (Hereditary and cohereditary operators)
title_full Closure operators in the categories of modules Part II (Hereditary and cohereditary operators)
title_fullStr Closure operators in the categories of modules Part II (Hereditary and cohereditary operators)
title_full_unstemmed Closure operators in the categories of modules Part II (Hereditary and cohereditary operators)
title_sort closure operators in the categories of modules part ii (hereditary and cohereditary operators)
description This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category \(R\)-Mod are described. Using the results of [1], in this part the other classes of closure operators \(C\) are characterized by the associated functions \(\mathcal{F}_1^C\)  and  \(\mathcal{F}_2^{C}\)  which separate in every module \(M \in R\)-Mod the sets of  \(C\)-dense submodules and \(C\)-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/757
work_keys_str_mv AT kashuai closureoperatorsinthecategoriesofmodulespartiihereditaryandcohereditaryoperators
first_indexed 2024-04-12T06:25:23Z
last_indexed 2024-04-12T06:25:23Z
_version_ 1796109238294020096