On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field

In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field \(k\): \(\mathrm{ker}\,\hat{\phi}(k) \; \times \; \mathrm{coker}\,(\phi(k)) \longrightarrow k^*\), and proved its perfectness ove...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Nesteruk, Volodymyr
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/759
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field \(k\): \(\mathrm{ker}\,\hat{\phi}(k) \; \times \; \mathrm{coker}\,(\phi(k)) \longrightarrow k^*\), and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1].