On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field \(k\): \(\mathrm{ker}\,\hat{\phi}(k) \; \times \; \mathrm{coker}\,(\phi(k)) \longrightarrow k^*\), and proved its perfectness ove...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/759 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field \(k\): \(\mathrm{ker}\,\hat{\phi}(k) \; \times \; \mathrm{coker}\,(\phi(k)) \longrightarrow k^*\), and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1]. |
|---|