On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field \(k\): \(\mathrm{ker}\,\hat{\phi}(k) \; \times \; \mathrm{coker}\,(\phi(k)) \longrightarrow k^*\), and proved its perfectness ove...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | Nesteruk, Volodymyr |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/759 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
von: Nesteruk, Volodymyr
Veröffentlicht: (2018) -
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
von: Nesteruk, V.
Veröffentlicht: (2013) -
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
von: V. Nesteruk
Veröffentlicht: (2013) -
Cohen-Macaulay modules over the plane curve singularity of type \(T_{44}\), II
von: Drozd, Yuriy A., et al.
Veröffentlicht: (2019) -
Cohen-Macaulay modules over the plane curve singularity of type \(T_{44}\), II
von: Drozd, Yuriy A., et al.
Veröffentlicht: (2019)