The edge chromatic number of \(\Gamma_{I}(R)\)

For a commutative ring \(R\) and an ideal \(I\) of \(R\), the ideal-based zero-divisor graph is the undirected graph \(\Gamma_{I}(R)\) with vertices \(\{x\in R-I: xy\in I~ \text{for some}~ y\in R-I\}\), where distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy\in I\). In this paper, w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Kala, R., Mallika, A., Selvakumar, K.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-76
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-762018-04-26T02:43:18Z The edge chromatic number of \(\Gamma_{I}(R)\) Kala, R. Mallika, A. Selvakumar, K. zero-divisor graph, chromatic number, ideal-based zero-divisor graph 05C99, 13A15, 13F10 For a commutative ring \(R\) and an ideal \(I\) of \(R\), the ideal-based zero-divisor graph is the undirected graph \(\Gamma_{I}(R)\) with vertices \(\{x\in R-I: xy\in I~ \text{for some}~ y\in R-I\}\), where distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy\in I\). In this paper, we discuss the nature of the edges of \(\Gamma_{I}(R)\). We also find the edge chromatic number for the graph \(\Gamma_{I}(R)\). Lugansk National Taras Shevchenko University DST-INSPIRE Fellowship 2018-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76 Algebra and Discrete Mathematics; Vol 24, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76/pdf Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic zero-divisor graph
chromatic number
ideal-based zero-divisor graph
05C99
13A15
13F10
spellingShingle zero-divisor graph
chromatic number
ideal-based zero-divisor graph
05C99
13A15
13F10
Kala, R.
Mallika, A.
Selvakumar, K.
The edge chromatic number of \(\Gamma_{I}(R)\)
topic_facet zero-divisor graph
chromatic number
ideal-based zero-divisor graph
05C99
13A15
13F10
format Article
author Kala, R.
Mallika, A.
Selvakumar, K.
author_facet Kala, R.
Mallika, A.
Selvakumar, K.
author_sort Kala, R.
title The edge chromatic number of \(\Gamma_{I}(R)\)
title_short The edge chromatic number of \(\Gamma_{I}(R)\)
title_full The edge chromatic number of \(\Gamma_{I}(R)\)
title_fullStr The edge chromatic number of \(\Gamma_{I}(R)\)
title_full_unstemmed The edge chromatic number of \(\Gamma_{I}(R)\)
title_sort edge chromatic number of \(\gamma_{i}(r)\)
description For a commutative ring \(R\) and an ideal \(I\) of \(R\), the ideal-based zero-divisor graph is the undirected graph \(\Gamma_{I}(R)\) with vertices \(\{x\in R-I: xy\in I~ \text{for some}~ y\in R-I\}\), where distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy\in I\). In this paper, we discuss the nature of the edges of \(\Gamma_{I}(R)\). We also find the edge chromatic number for the graph \(\Gamma_{I}(R)\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76
work_keys_str_mv AT kalar theedgechromaticnumberofgammair
AT mallikaa theedgechromaticnumberofgammair
AT selvakumark theedgechromaticnumberofgammair
AT kalar edgechromaticnumberofgammair
AT mallikaa edgechromaticnumberofgammair
AT selvakumark edgechromaticnumberofgammair
first_indexed 2024-04-12T06:25:24Z
last_indexed 2024-04-12T06:25:24Z
_version_ 1796109222589497344