The edge chromatic number of \(\Gamma_{I}(R)\)
For a commutative ring \(R\) and an ideal \(I\) of \(R\), the ideal-based zero-divisor graph is the undirected graph \(\Gamma_{I}(R)\) with vertices \(\{x\in R-I: xy\in I~ \text{for some}~ y\in R-I\}\), where distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy\in I\). In this paper, w...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-76 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-762018-04-26T02:43:18Z The edge chromatic number of \(\Gamma_{I}(R)\) Kala, R. Mallika, A. Selvakumar, K. zero-divisor graph, chromatic number, ideal-based zero-divisor graph 05C99, 13A15, 13F10 For a commutative ring \(R\) and an ideal \(I\) of \(R\), the ideal-based zero-divisor graph is the undirected graph \(\Gamma_{I}(R)\) with vertices \(\{x\in R-I: xy\in I~ \text{for some}~ y\in R-I\}\), where distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy\in I\). In this paper, we discuss the nature of the edges of \(\Gamma_{I}(R)\). We also find the edge chromatic number for the graph \(\Gamma_{I}(R)\). Lugansk National Taras Shevchenko University DST-INSPIRE Fellowship 2018-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76 Algebra and Discrete Mathematics; Vol 24, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76/pdf Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
zero-divisor graph chromatic number ideal-based zero-divisor graph 05C99 13A15 13F10 |
spellingShingle |
zero-divisor graph chromatic number ideal-based zero-divisor graph 05C99 13A15 13F10 Kala, R. Mallika, A. Selvakumar, K. The edge chromatic number of \(\Gamma_{I}(R)\) |
topic_facet |
zero-divisor graph chromatic number ideal-based zero-divisor graph 05C99 13A15 13F10 |
format |
Article |
author |
Kala, R. Mallika, A. Selvakumar, K. |
author_facet |
Kala, R. Mallika, A. Selvakumar, K. |
author_sort |
Kala, R. |
title |
The edge chromatic number of \(\Gamma_{I}(R)\) |
title_short |
The edge chromatic number of \(\Gamma_{I}(R)\) |
title_full |
The edge chromatic number of \(\Gamma_{I}(R)\) |
title_fullStr |
The edge chromatic number of \(\Gamma_{I}(R)\) |
title_full_unstemmed |
The edge chromatic number of \(\Gamma_{I}(R)\) |
title_sort |
edge chromatic number of \(\gamma_{i}(r)\) |
description |
For a commutative ring \(R\) and an ideal \(I\) of \(R\), the ideal-based zero-divisor graph is the undirected graph \(\Gamma_{I}(R)\) with vertices \(\{x\in R-I: xy\in I~ \text{for some}~ y\in R-I\}\), where distinct vertices \(x\) and \(y\) are adjacent if and only if \(xy\in I\). In this paper, we discuss the nature of the edges of \(\Gamma_{I}(R)\). We also find the edge chromatic number for the graph \(\Gamma_{I}(R)\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/76 |
work_keys_str_mv |
AT kalar theedgechromaticnumberofgammair AT mallikaa theedgechromaticnumberofgammair AT selvakumark theedgechromaticnumberofgammair AT kalar edgechromaticnumberofgammair AT mallikaa edgechromaticnumberofgammair AT selvakumark edgechromaticnumberofgammair |
first_indexed |
2024-04-12T06:25:24Z |
last_indexed |
2024-04-12T06:25:24Z |
_version_ |
1796109222589497344 |