Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
A convolution is a mapping \(\mathcal{C}\) of the set \(\mathcal{Z}^{+}\) of positive integers into the set \(\mathcal{P}(\mathcal{Z}^{+})\) of all subsets of \(\mathcal{Z}^{+}\) such that every member of \(\mathcal{C}(n)\) is a divisor of \(n\). If for any \(n\), \(D(n)\) is the set of all positiv...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/760 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозиторії
Algebra and Discrete MathematicsРезюме: | A convolution is a mapping \(\mathcal{C}\) of the set \(\mathcal{Z}^{+}\) of positive integers into the set \(\mathcal{P}(\mathcal{Z}^{+})\) of all subsets of \(\mathcal{Z}^{+}\) such that every member of \(\mathcal{C}(n)\) is a divisor of \(n\). If for any \(n\), \(D(n)\) is the set of all positive divisors of \(n\) , then \(D\) is called the Dirichlet's convolution. It is well known that \(\mathcal{Z}^{+}\) has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution \(\mathcal{C}\), one can define a binary relation \(\leq_{\mathcal{C}}\) on \(\mathcal{Z}^{+}\) by ` \(m\leq_{\mathcal{C}}n \) if and only if \( m\in \mathcal{C}(n)\) ' . A general convolution may not induce a lattice on \(\mathcal{Z^{+}}\) . However most of the convolutions induce a meet semi lattice structure on \(\mathcal{Z^{+}}\) .In this paper we consider a general meet semi lattice and study it's ideals and extend these to \((\mathcal{Z}^{+},\leq_{D})\) , where \(D\) is the Dirichlet's convolution. |
---|