Ideals in \((\mathcal{Z}^{+},\leq_{D})\)

A convolution  is a mapping \(\mathcal{C}\) of the set \(\mathcal{Z}^{+}\) of positive integers into the set \(\mathcal{P}(\mathcal{Z}^{+})\) of all subsets of \(\mathcal{Z}^{+}\) such that every member of \(\mathcal{C}(n)\) is a divisor of \(n\). If for any \(n\), \(D(n)\) is the set of all positiv...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Sagi, Sankar
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/760
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-760
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7602018-04-26T01:26:05Z Ideals in \((\mathcal{Z}^{+},\leq_{D})\) Sagi, Sankar Partial Order,Lattice,Semi Lattice,Convolution,Ideal 06B10,11A99 A convolution  is a mapping \(\mathcal{C}\) of the set \(\mathcal{Z}^{+}\) of positive integers into the set \(\mathcal{P}(\mathcal{Z}^{+})\) of all subsets of \(\mathcal{Z}^{+}\) such that every member of \(\mathcal{C}(n)\) is a divisor of \(n\). If for any \(n\), \(D(n)\) is the set of all positive divisors of \(n\) , then \(D\) is called the Dirichlet's convolution. It is well known that \(\mathcal{Z}^{+}\) has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution \(\mathcal{C}\), one can define a binary relation \(\leq_{\mathcal{C}}\) on \(\mathcal{Z}^{+}\) by ` \(m\leq_{\mathcal{C}}n \) if and only if \( m\in \mathcal{C}(n)\) ' . A general convolution may not induce a lattice on \(\mathcal{Z^{+}}\) . However most of the convolutions induce a meet semi lattice structure on \(\mathcal{Z^{+}}\) .In this paper we consider a general meet semi lattice and study it's ideals and extend these to \((\mathcal{Z}^{+},\leq_{D})\) , where \(D\) is the Dirichlet's convolution. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/760 Algebra and Discrete Mathematics; Vol 16, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/760/289 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Partial Order,Lattice,Semi Lattice,Convolution,Ideal
06B10,11A99
spellingShingle Partial Order,Lattice,Semi Lattice,Convolution,Ideal
06B10,11A99
Sagi, Sankar
Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
topic_facet Partial Order,Lattice,Semi Lattice,Convolution,Ideal
06B10,11A99
format Article
author Sagi, Sankar
author_facet Sagi, Sankar
author_sort Sagi, Sankar
title Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
title_short Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
title_full Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
title_fullStr Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
title_full_unstemmed Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
title_sort ideals in \((\mathcal{z}^{+},\leq_{d})\)
description A convolution  is a mapping \(\mathcal{C}\) of the set \(\mathcal{Z}^{+}\) of positive integers into the set \(\mathcal{P}(\mathcal{Z}^{+})\) of all subsets of \(\mathcal{Z}^{+}\) such that every member of \(\mathcal{C}(n)\) is a divisor of \(n\). If for any \(n\), \(D(n)\) is the set of all positive divisors of \(n\) , then \(D\) is called the Dirichlet's convolution. It is well known that \(\mathcal{Z}^{+}\) has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution \(\mathcal{C}\), one can define a binary relation \(\leq_{\mathcal{C}}\) on \(\mathcal{Z}^{+}\) by ` \(m\leq_{\mathcal{C}}n \) if and only if \( m\in \mathcal{C}(n)\) ' . A general convolution may not induce a lattice on \(\mathcal{Z^{+}}\) . However most of the convolutions induce a meet semi lattice structure on \(\mathcal{Z^{+}}\) .In this paper we consider a general meet semi lattice and study it's ideals and extend these to \((\mathcal{Z}^{+},\leq_{D})\) , where \(D\) is the Dirichlet's convolution.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/760
work_keys_str_mv AT sagisankar idealsinmathcalzleqd
first_indexed 2024-04-12T06:26:52Z
last_indexed 2024-04-12T06:26:52Z
_version_ 1796109199327887360