On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers

The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Dashkova, O. Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for which the quotient modules \(A/C_{A}(H)\) are not Artinian \(\bf Z_{p^{\infty}}\)-modules satisfies the minimal condition on subgroups.  It is proved that the group \(G\) under consideration is soluble and some its properties are obtained.