On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers

The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for whic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Dashkova, O. Yu.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-767
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7672018-04-04T08:31:48Z On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers Dashkova, O. Yu. Linear group, Artinian module, locally soluble group 20F19; 20H25 The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for which the quotient modules \(A/C_{A}(H)\) are not Artinian \(\bf Z_{p^{\infty}}\)-modules satisfies the minimal condition on subgroups.  It is proved that the group \(G\) under consideration is soluble and some its properties are obtained. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767 Algebra and Discrete Mathematics; Vol 8, No 1 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767/297 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T08:31:48Z
collection OJS
language English
topic Linear group
Artinian module
locally soluble group
20F19
20H25
spellingShingle Linear group
Artinian module
locally soluble group
20F19
20H25
Dashkova, O. Yu.
On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
topic_facet Linear group
Artinian module
locally soluble group
20F19
20H25
format Article
author Dashkova, O. Yu.
author_facet Dashkova, O. Yu.
author_sort Dashkova, O. Yu.
title On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
title_short On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
title_full On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
title_fullStr On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
title_full_unstemmed On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
title_sort on modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
description The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for which the quotient modules \(A/C_{A}(H)\) are not Artinian \(\bf Z_{p^{\infty}}\)-modules satisfies the minimal condition on subgroups.  It is proved that the group \(G\) under consideration is soluble and some its properties are obtained.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767
work_keys_str_mv AT dashkovaoyu onmodulesovergroupringsoflocallysolublegroupsforaringofpadicintegers
first_indexed 2025-07-17T10:35:44Z
last_indexed 2025-07-17T10:35:44Z
_version_ 1837890058956308480