On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers
The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for whic...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-767 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-7672018-04-04T08:31:48Z On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers Dashkova, O. Yu. Linear group, Artinian module, locally soluble group 20F19; 20H25 The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for which the quotient modules \(A/C_{A}(H)\) are not Artinian \(\bf Z_{p^{\infty}}\)-modules satisfies the minimal condition on subgroups. It is proved that the group \(G\) under consideration is soluble and some its properties are obtained. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767 Algebra and Discrete Mathematics; Vol 8, No 1 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767/297 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2018-04-04T08:31:48Z |
collection |
OJS |
language |
English |
topic |
Linear group Artinian module locally soluble group 20F19 20H25 |
spellingShingle |
Linear group Artinian module locally soluble group 20F19 20H25 Dashkova, O. Yu. On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers |
topic_facet |
Linear group Artinian module locally soluble group 20F19 20H25 |
format |
Article |
author |
Dashkova, O. Yu. |
author_facet |
Dashkova, O. Yu. |
author_sort |
Dashkova, O. Yu. |
title |
On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers |
title_short |
On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers |
title_full |
On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers |
title_fullStr |
On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers |
title_full_unstemmed |
On modules over group rings of locally soluble groups for a ring of \(p\)-adic integers |
title_sort |
on modules over group rings of locally soluble groups for a ring of \(p\)-adic integers |
description |
The author studies the \(\bf Z_{p^{\infty}}\)\(G\)-module \(A\) such that \(\bf Z_{p^{\infty}}\) is a ring of \(p\)-adic integers, a group \(G\) is locally soluble, the quotient module \(A/C_{A}(G)\) is not Artinian \(\bf Z_{p^{\infty}}\)-module, and the system of all subgroups \(H \leq G\) for which the quotient modules \(A/C_{A}(H)\) are not Artinian \(\bf Z_{p^{\infty}}\)-modules satisfies the minimal condition on subgroups. It is proved that the group \(G\) under consideration is soluble and some its properties are obtained. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/767 |
work_keys_str_mv |
AT dashkovaoyu onmodulesovergroupringsoflocallysolublegroupsforaringofpadicintegers |
first_indexed |
2025-07-17T10:35:44Z |
last_indexed |
2025-07-17T10:35:44Z |
_version_ |
1837890058956308480 |