On Galois groups of prime degree polynomials with complex roots

Let \(f\) be an irreducible polynomial of prime degree \(p\geq 5\) over \({\mathbb Q}\), with precisely \(k\)  pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if  \(p\geq 4k+1\) then \(\operatorname{Gal}(f/{\mathbb Q})\) is isomorphic to \(A_{p}\) or \(S_{p}\). This improv...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Ben-Shimol, Oz
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/780
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-780
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7802018-04-04T08:38:30Z On Galois groups of prime degree polynomials with complex roots Ben-Shimol, Oz 20B35; 12F12 Let \(f\) be an irreducible polynomial of prime degree \(p\geq 5\) over \({\mathbb Q}\), with precisely \(k\)  pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if  \(p\geq 4k+1\) then \(\operatorname{Gal}(f/{\mathbb Q})\) is isomorphic to \(A_{p}\) or \(S_{p}\). This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska.If such a polynomial \(f\) is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree \(p\) over \({\mathbb Q}\) having complex roots. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/780 Algebra and Discrete Mathematics; Vol 8, No 2 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/780/310 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic
20B35; 12F12
spellingShingle
20B35; 12F12
Ben-Shimol, Oz
On Galois groups of prime degree polynomials with complex roots
topic_facet
20B35; 12F12
format Article
author Ben-Shimol, Oz
author_facet Ben-Shimol, Oz
author_sort Ben-Shimol, Oz
title On Galois groups of prime degree polynomials with complex roots
title_short On Galois groups of prime degree polynomials with complex roots
title_full On Galois groups of prime degree polynomials with complex roots
title_fullStr On Galois groups of prime degree polynomials with complex roots
title_full_unstemmed On Galois groups of prime degree polynomials with complex roots
title_sort on galois groups of prime degree polynomials with complex roots
description Let \(f\) be an irreducible polynomial of prime degree \(p\geq 5\) over \({\mathbb Q}\), with precisely \(k\)  pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if  \(p\geq 4k+1\) then \(\operatorname{Gal}(f/{\mathbb Q})\) is isomorphic to \(A_{p}\) or \(S_{p}\). This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska.If such a polynomial \(f\) is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree \(p\) over \({\mathbb Q}\) having complex roots.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/780
work_keys_str_mv AT benshimoloz ongaloisgroupsofprimedegreepolynomialswithcomplexroots
first_indexed 2024-04-12T06:26:17Z
last_indexed 2024-04-12T06:26:17Z
_version_ 1796109162944397312