Frattini theory for \(N\)-Lie algebras
We develop a Frattini Theory for \(n\)-Lie algebras by extending theorems of Barnes' to the \(n\)-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal.
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-781 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-7812018-04-04T08:38:30Z Frattini theory for \(N\)-Lie algebras Williams, Michael Peretzian Lie algebras, non-associative algebras 15 Linear and multilinear algebra; matrix theory, 17 Nonassociative rings and algebras We develop a Frattini Theory for \(n\)-Lie algebras by extending theorems of Barnes' to the \(n\)-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781 Algebra and Discrete Mathematics; Vol 8, No 2 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781/311 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Lie algebras non-associative algebras 15 Linear and multilinear algebra; matrix theory 17 Nonassociative rings and algebras |
spellingShingle |
Lie algebras non-associative algebras 15 Linear and multilinear algebra; matrix theory 17 Nonassociative rings and algebras Williams, Michael Peretzian Frattini theory for \(N\)-Lie algebras |
topic_facet |
Lie algebras non-associative algebras 15 Linear and multilinear algebra; matrix theory 17 Nonassociative rings and algebras |
format |
Article |
author |
Williams, Michael Peretzian |
author_facet |
Williams, Michael Peretzian |
author_sort |
Williams, Michael Peretzian |
title |
Frattini theory for \(N\)-Lie algebras |
title_short |
Frattini theory for \(N\)-Lie algebras |
title_full |
Frattini theory for \(N\)-Lie algebras |
title_fullStr |
Frattini theory for \(N\)-Lie algebras |
title_full_unstemmed |
Frattini theory for \(N\)-Lie algebras |
title_sort |
frattini theory for \(n\)-lie algebras |
description |
We develop a Frattini Theory for \(n\)-Lie algebras by extending theorems of Barnes' to the \(n\)-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781 |
work_keys_str_mv |
AT williamsmichaelperetzian frattinitheoryfornliealgebras |
first_indexed |
2024-04-12T06:25:24Z |
last_indexed |
2024-04-12T06:25:24Z |
_version_ |
1796109253593792512 |