Frattini theory for \(N\)-Lie algebras

We develop a Frattini Theory for \(n\)-Lie algebras by extending theorems of Barnes' to the \(n\)-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal.

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Williams, Michael Peretzian
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-781
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7812018-04-04T08:38:30Z Frattini theory for \(N\)-Lie algebras Williams, Michael Peretzian Lie algebras, non-associative algebras 15 Linear and multilinear algebra; matrix theory, 17 Nonassociative rings and algebras We develop a Frattini Theory for \(n\)-Lie algebras by extending theorems of Barnes' to the \(n\)-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781 Algebra and Discrete Mathematics; Vol 8, No 2 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781/311 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Lie algebras
non-associative algebras
15 Linear and multilinear algebra; matrix theory
17 Nonassociative rings and algebras
spellingShingle Lie algebras
non-associative algebras
15 Linear and multilinear algebra; matrix theory
17 Nonassociative rings and algebras
Williams, Michael Peretzian
Frattini theory for \(N\)-Lie algebras
topic_facet Lie algebras
non-associative algebras
15 Linear and multilinear algebra; matrix theory
17 Nonassociative rings and algebras
format Article
author Williams, Michael Peretzian
author_facet Williams, Michael Peretzian
author_sort Williams, Michael Peretzian
title Frattini theory for \(N\)-Lie algebras
title_short Frattini theory for \(N\)-Lie algebras
title_full Frattini theory for \(N\)-Lie algebras
title_fullStr Frattini theory for \(N\)-Lie algebras
title_full_unstemmed Frattini theory for \(N\)-Lie algebras
title_sort frattini theory for \(n\)-lie algebras
description We develop a Frattini Theory for \(n\)-Lie algebras by extending theorems of Barnes' to the \(n\)-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781
work_keys_str_mv AT williamsmichaelperetzian frattinitheoryfornliealgebras
first_indexed 2024-04-12T06:25:24Z
last_indexed 2024-04-12T06:25:24Z
_version_ 1796109253593792512