2025-02-22T23:59:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-781%22&qt=morelikethis&rows=5
2025-02-22T23:59:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-781%22&qt=morelikethis&rows=5
2025-02-22T23:59:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:59:28-05:00 DEBUG: Deserialized SOLR response
Frattini theory for \(N\)-Lie algebras
We develop a Frattini Theory for \(n\)-Lie algebras by extending theorems of Barnes' to the \(n\)-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal.
Saved in:
Main Author: | Williams, Michael Peretzian |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/781 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T23:59:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-781%22&qt=morelikethis
2025-02-22T23:59:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-781%22&qt=morelikethis
2025-02-22T23:59:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:59:28-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
A note on simplicity of contact Lie algebras over \(\operatorname{GF}(2)\)
by: Zargeh, Chia
Published: (2018) -
\((\mathcal{T}_{\textsf {Lie}})\)-Leibniz algebras and related properties
by: Tcheka, C., et al.
Published: (2024) -
Automorphic equivalence of the representations of Lie algebras
by: Shestakov, I., et al.
Published: (2018) -
Ideally finite Leibniz algebras
by: Kurdachenko, L. A., et al.
Published: (2023) -
Small non-associative division algebras up to isotopy
by: Schwarz, Thomas
Published: (2018)