Partial Hopf actions, partial invariants and a Morita context

Partial actions of Hopf algebras can be considered as a generalization of partial actions of groups on algebras. Among important properties of partial Hopf actions, it is possible to assure the existence of enveloping actions [1]. This allows to extend several results from the theory of partial grou...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Alves, Marcelo Muniz S., Batista, Eliezer
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/783
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Partial actions of Hopf algebras can be considered as a generalization of partial actions of groups on algebras. Among important properties of partial Hopf actions, it is possible to assure the existence of enveloping actions [1]. This allows to extend several results from the theory of partial group actions to the Hopf algebraic setting. In this article, we explore some properties of the fixed point subalgebra with relation to a partial action of a Hopf algebra. We also construct, for partial actions of finite dimensional Hopf algebras a Morita context relating the fixed point subalgebra and the partial smash product. This is a generalization of a well known result in the theory of Hopf algebras [9]  for the case of partial actions. Finally, we study Hopf-Galois extensions and reobtain some classical results in the partial case.