A variant of the primitive element theorem for separable extensions of a commutative ring

In this article we show that any strongly separable extension of a commutative ring \(R\) can be embedded into another one having primitive element whenever every boolean localization of  \(R\) modulo its Jacobson radical is von Neumann regular and locally uniform.

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Bagio, Dirceu, Paques, Antonio
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-784
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7842018-04-04T08:43:10Z A variant of the primitive element theorem for separable extensions of a commutative ring Bagio, Dirceu Paques, Antonio primitive element, separable extension, boolean localization 13B05, 12F10 In this article we show that any strongly separable extension of a commutative ring \(R\) can be embedded into another one having primitive element whenever every boolean localization of  \(R\) modulo its Jacobson radical is von Neumann regular and locally uniform. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784 Algebra and Discrete Mathematics; Vol 8, No 3 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784/314 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic primitive element
separable extension
boolean localization
13B05
12F10
spellingShingle primitive element
separable extension
boolean localization
13B05
12F10
Bagio, Dirceu
Paques, Antonio
A variant of the primitive element theorem for separable extensions of a commutative ring
topic_facet primitive element
separable extension
boolean localization
13B05
12F10
format Article
author Bagio, Dirceu
Paques, Antonio
author_facet Bagio, Dirceu
Paques, Antonio
author_sort Bagio, Dirceu
title A variant of the primitive element theorem for separable extensions of a commutative ring
title_short A variant of the primitive element theorem for separable extensions of a commutative ring
title_full A variant of the primitive element theorem for separable extensions of a commutative ring
title_fullStr A variant of the primitive element theorem for separable extensions of a commutative ring
title_full_unstemmed A variant of the primitive element theorem for separable extensions of a commutative ring
title_sort variant of the primitive element theorem for separable extensions of a commutative ring
description In this article we show that any strongly separable extension of a commutative ring \(R\) can be embedded into another one having primitive element whenever every boolean localization of  \(R\) modulo its Jacobson radical is von Neumann regular and locally uniform.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784
work_keys_str_mv AT bagiodirceu avariantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT paquesantonio avariantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT bagiodirceu variantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT paquesantonio variantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
first_indexed 2024-04-12T06:25:50Z
last_indexed 2024-04-12T06:25:50Z
_version_ 1796109211961131008