A variant of the primitive element theorem for separable extensions of a commutative ring
In this article we show that any strongly separable extension of a commutative ring \(R\) can be embedded into another one having primitive element whenever every boolean localization of \(R\) modulo its Jacobson radical is von Neumann regular and locally uniform.
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | Bagio, Dirceu, Paques, Antonio |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
A variant of the primitive element theorem for separable extensions of a commutative ring
von: Bagio, Dirceu, et al.
Veröffentlicht: (2018) -
A variant of the primitive element theorem for separable extensions of a commutative ring
von: Bagio, D., et al.
Veröffentlicht: (2009) -
The commutator Hopf Galois extensions
von: Szeto, George, et al.
Veröffentlicht: (2018) -
On separable and \(H\)-separable polynomials in skew polynomial rings of several variables
von: Ikehata, Shuichi
Veröffentlicht: (2018) -
On separable and \(H\)-separable polynomials in skew polynomial rings of several variables
von: Ikehata, Shuichi
Veröffentlicht: (2018)